
ADVANCES IN COMPUTER SCIENCE RESEARCH

SCREEN KEYBOARD ARRANGEMENT
OPTIMIZATION FOR POLISH LANGUAGE

Michał Wołosik, Marek Tabędzki

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: The aim of this work was to find screen keyboard arrangement optimal for Polish
language. This study adopted a standard shape and organization of the keyboard, the task is
therefore only for identifying the best permutations of keys. Only the alphabet keys and
five selected punctuation marks were permutated. In order to accomplish this task, machine
learning methods were used: genetic algorithms and simulated annealing. Fitness function is
based on two literary works and one technical document. The following criteria were used: of
distance, the writing direction and row weights. The application prepared for the experiments
was developed in Java. The paper describes used algorithms and obtained results. Best found
arrangement would shorten the time to input sample texts by about 30% (assuming adequate
accustom of the new layout by the writer).

Keywords: keyboard arrangement problem, genetic algorithms, simulated annealing

1. Introduction

The most popular input device, that among other things is used to enter the text, is a
computer keyboard. Common alternative for a classic physical keyboard is its screen
counterpart, that usually can be displayed on the monitor and managed with a mouse.
Almost every country has its own key arrangement which is optimal for the local
language. What’s interesting, for some reason it’s different in Poland so this subject
is worth looking into and perhaps there is something that could be done about it.

The goal of this work is to develop keyboard arrangement that would be optimal
for Polish language. The task is connected to minimizing lengths of moves that need
to be performed by mouse pointer in order to rewrite given text. There are also other
less important criteria that might be taken under consideration that define difficulty
of typing the text. In this work keyboard that is being optimized is of standard rect-
angular shape and the same set of keys that are present in QWERTY “programmer”
version arrangement.

Advances in Computer Science Research, vol. 13, pp. 75-93, 2016.

75

Michał Wołosik, Marek Tabędzki

In order to achieve mentioned goal it is necessary to use machine learning meth-
ods like evolutionary algorithms or simmulated annealing, which would train key-
board arrangement with sample text blocks that are well representants of given lan-
guage characteristics. For instance, it could be some classic novels. Polish texts that
have been used in this work are among the others: “With fire and sword” by Hen-
ryk Sienkiewicz (Ogniem i mieczem) and “Sir Thaddeus” by Adam Mickiewicz (Pan
Tadeusz).

In the next section you can find a short review of typical approaches and algo-
rithms that are usually used to solve keyboard arrangement problem (KAP). Then,
the details about permutational representation of the chromosome are explained. Fol-
lowing section is dedicated to the topic of multicriterial evaluation function. Then,
the optimization methods that were implemented and used for experiments are de-
scribed. Final sections contain results of the tests, and present and describe optimized
keyboard arrangement – achieved goal of this work. It is followed by a short summary
of what have been done and some loose conclusions.

2. KAP

In Poland, the most popular arrangement is called by its first letters of upper row
keys – QWERTY keyboard in so called “programmer” version, or QWERTZ in older
devices. In French-speaking countries most commonly used layout is AZERTY [16]
while in English-speaking countries many kinds of QWERTY and its rival DVORAC
[2, 4] can be encountered.

Keyboard arrangement problem (KAP) for certain language is a task in which
evolutionary algorithms are usually applied. The key issue here is to determine ap-
propriate individual representation as chromosome. One way of doing this, what was
proposed in [6], is permutation. Next thing, that has to be established is an evaluation
function, which would measure optimization level of current keyboard arrangement.
This requires answering the question what ergonomic factors should be considered. It
mostly depends on input that keyboard operates on. Wheter all fingers of both hands
can be used, only two thumbs like in [9] or maybe text can be typed with just one
pointer.

In literature, in conjunction with problem that is being discussed in this work,
beside usage of genetic algorithms, applications of other methods can also be found.
Very common are simulated annealing [1, 3, 8] and ant colony algorithms [14].

76

Screen keyboard arrangement optimization for Polish language

2.1 Chromosome representation and typing simulation

Experiments were conducted for PC screen keyboard with standard rectangular shape
and the same set of keys that can be found in QWERTY “programmer” arrangement.
Similarly how it has been done by Julstrom, Goettl and Brugh in [6], chromosome
were encoded as permutation of keys. Index of each element is connected to its posi-
tion on keyboard. Permutation includes 26 keys that represents latin alphabet charac-
ters and 5 punctuation keys (in [6] there was only 4). Size of problem space to search
is: 31!≈ 8.22×1033

Application created for experiments, in order to rewrite exemplary text block
coded in UTF-8, is able to use keys that are highlighted in Figure 1. Light grey ones
are part of chromosome and the darker ones have fixed positions.

Fig. 1. Movable and fixed keys

Each following recognizable character has to be mapped on a proper keys se-
quence. For instance for digit or small letter it will simply be one key that represents
this digit or letter, and for capital letter it would be sequence of Shift key and this
letter key.

3. Evaluation function for SFKL problem

Experiments were conducted for keyboard that is controlled with mouse pointer. In
literature [3, 8] this approach is referred as single-finger keyboard layout problem
(SFKL). This is important regarding cost calculation and ergonomics of typing. Chro-
mosome evaluation function should estimate difficulty of rewriting given text block.
Therefore, its global minimum has to be found.

77

Michał Wołosik, Marek Tabędzki

3.1 Text blocks used for experiments

Texts that are going to be used to train keyboard arrangements should reflect char-
acteristics of given language as well as possible. Set of three text blocks1, that were
used in this work contains following files: ogniem-i-mieczem-dwa-tomy.txt (With
fire and sword), which includes 1719477 characters, pan-tadeusz.txt (Sir Thaddeus)
with 503759 characters and wytyczne_informatyka-15.txt (Guidelines and advices
on diploma work preparation) with 23850 characters. Chart in Figure 2 presents av-
eraged probabilities of each key occurrence during rewriting of mentioned texts, and
Figure 3 shows probabilities of pair of keys occurrences (one key after another).
Charts do not include keys that are not part of chromosome.

Fig. 2. Keys probabilities

Buttons which among the others refer to Polish diacritical characters have high
frequency. For example key A has to be clicked each time when ‘a’ or ‘ą’ character
occurs in the text. Therefore characteristics of keys typing frequency during writing
Polish text with a keyboard should not be confused with characteristics of characters
occurrences frequency in this language.

Four most probable pairs of keys that are clicked one after another are: 〈I,E〉,
〈N, I〉, 〈O,W〉, 〈Z,E〉with probabilities of 0.01943, 0.01371, 0.00987, 0.0089 respec-
tively.

1 Texts “With fire and sword” by H. Sienkiewicz and “Sir Thaddeus” by A. Mickiewicz have been
downloaded from https://wolnelektury.pl/. The third text block is a dokument that contains
guidelines and advices on diploma work preparation which is available on http://wi.pb.edu.pl/.

78

Screen keyboard arrangement optimization for Polish language

Fig. 3. Probabilities of pair of keys, first in row

For each of analyzed text blocks, proportions of concrete keys and pairs of keys
frequencies are almost identical. In all cases key A is the most commonly clicked
button and pair 〈I,E〉 is the most frequent.

3.2 Multicriterial evaluation function

Developed fitness function is composed of 3 different criteria, which are usually used
for single-finger keyboard optimization problem. They are described below.

Distances criterion considers length of path that mouse pointer needs to travel
by moving from previous to next keys. In [8] has pointed out, that “the s-finger key-
board layout problem can be modeled in terms of the Quadratic Assignment Problem
(QAP)”, which involves assigning n facilities to n locations in optimal way. In [3, 8]
researchers mentioned two square matrixes: flow matrix, in which cell ci j contains
probability of flow between objects i and j, and also distances matrix in which dkl is
euclidean distance between positions k and l. Whole cost of rewriting the text for this
criterion given in [8] and [3] is the sum of multiplications of cells corresponding to
the same pairs of keys from both matrixes. Taking that n is the quantity of keys and
p(x) is the index of key x in permutation, formula looks like this:

D =
n

∑
i=1

n

∑
j=1

ci jdp(i)p(j) (1)

79

Michał Wołosik, Marek Tabędzki

Criterion of hit direction – in [8] researchers concluded, that it is better if the
direction of mouse pointer movement is corresponding to the direction of natural
writing. For Polish language it is from left to right. The pair of keys I and E has the
highest probability (0.01943) of occurrence one after another. Therefore, expected
situation after optimization process for this criterion is arrangement where key corre-
sponding to letter I is on the left from key corresponding to letter E. Formula below
shows the penalty that is added:

S =
n

∑
i=1

n

∑
j=1

ci jvi j (2)

where: vi j =

{
1, if xi− x j > 0
0, otherwise

Row weights – the last criterion proposed in publication [8]. It is based on as-
sumption that more frequent keys should be placed in rows which are more conve-
nient to use. According to the most researchers opinion usage of the middle row is
more comfortable than the other two, so the most frequent keys should be put in there.
Nevertheless such solution would cause problems regarding distances criterion. Keys
that correspond to Polish diacritical characters are the most frequent ones and putting
them in the middle row their distances from fixed Alt key (which is below the bottom
row) would be increased. Therefore it has been decided that penalties would be given
for placing frequent keys in upper row only:

R =
n

∑
i=1

fiwi (3)

where:

– fi – probability of pressing key i

– wi =

{
2, if key i is placed in the upper row
1, otherwise

The final form of the fitness function which is based on previously mentioned
criteria:

F = aD+bS+ cR (4)

where: a, b and c are factors (weights of importance) of each criteria.
For cosmetic reason, these factors should sum up to 1. Optimal weights of cri-

teria importance were found experimentally in the analogical way to what has been

80

Screen keyboard arrangement optimization for Polish language

described in [8]. Test keyboard arrangement optimization algorithms has been run
iteratively, each time for different set of discussed factors, starting from a = 1 after
which factors b and c were increased by small values subtracted from a. Expected
results for each criterion were met with a = 0.8, b = 0.15 and c = 0.05. Fitness func-
tion values will later on be presented in proportion to the fitness value of QWERTY
programmer arrangement.

3.3 Typing time estimation, Fitts’s law

Typing time is very important in keyboard optimization evaluation. Theoretically the
distances criterion could be substituted with it. In [10] many different Fitts’s law –
based methods of mouse pointer travel time estimation (form one key to another)
were described. Taking that A is the distance between centers of source and the target
keys and W is the width of the target key, this is the formula that were used in this
work:

T =

{
10
49 log2

(A
W +1

)
, if A > 0

0.127, if A = 0
(5)

4. Used optimization algorithms

Within this work, experiments were conducted with genetic algorithms with and with-
out adaptive methods of mutation operator. Simulated annealing algorithm also has
been used.

4.1 Genetic algorithms

Usage of evolutionary algorithms is very common in context of KAP. These meth-
ods operate on some population of chromosomes simultaneously. In each iteration
(generation) to selected parents individuals from population, crossover and mutation
operators are applied. Children population is being created in this way. Next step
involves so called succession which is replacing some old individuals from actual
population with the new ones. These steps are repeated till the specified stop condi-
tion is satisfied, with hope that the next generations will “produce” better specimens.
Due to probabilistic nature of this algorithms they should be executed many times.

81

Michał Wołosik, Marek Tabędzki

Selection and succession operators Some basic models of succession and selection
operators are described by Wierzchoń in [15]. For experiments in this work selection
SUS and rank succession were used.

Proportional selection, which extension is SUS [12], chooses individuals to par-
ents population with probability Pi = fi/F , where F is the sum fitness of whole popu-
lation and fi is the fitness of i-th individual. It should be remembered that according to
chosen take on the problem, fitness function determines the cost, so before perform-
ing selection this function need to be transformed for each specimen: f ′i = fAV G/ fi,
where f ′i is the new fitness and fAV G is average fitness.

SUS (Stochastic Universal Sampling) instead of using only one selection point
on fitness sum space, it uses N equally spaced points like this, where N is a quantity
of parents population. Method randomly chooses only one value from range [0,1/N],
which becomes the first point. After that it generates next N− 1 points of selection,
starting from the first, incrementing value by interval 1/N. Finally, N individuals
addressed by these points being placed in their fitness range, are chosen to parents
population. Figure 4 shows example situation where population size is 10 and N = 6.

Fig. 4. Stochastic Universal Sampling, source: [12]

Thanks to this strategy there is lesser probability of premature convergence of
evolutionary algorithm, because there is a big chance for weaker individuals to be
chosen to parent population. In this way SUS maintains a large diversity of popula-
tion.

Rank succession on the other hand, which was used for experiments, sorts pop-
ulation by individuals fitness values with descending order. For each specimen con-
crete ranks are being assigned – the first gets value 1, next one gets previous value
increased by 1, etc. Ranks play the role of a new fitness function values. Follow-
ing replacement goes on by the means of roulette wheel method. Individuals for re-
placement are chosen with probability Pi = fi/F . The use of ranks makes it easier to
distinguish better individuals from worse ones in population of low diversity.

82

Screen keyboard arrangement optimization for Polish language

Crossover and mutation operators The role of crossover is to exchange features
between particular individuals – children are created by exchanging parents genes.
Mutation, by contrast, makes small modifications of single individuals [15] and is
usually performed with very small probability.

In experiments, for solutions coded as permutations, following crossover opera-
tors were used:

– UX (Uniform crossover) – at first, it iterates through both parents and copies the i-
th element from the first or second one (randomly selected) on the i-th position of
child chromosome. If on this position both elements from both parents are already
in the child, an empty space is left. After that, all blank places are randomly filled
with the rest available elements [6, 8, 11].

– PMX (Partially mapped crossover) – in detail, method was described in [11].
– OX (Order crossover) – at first a random segment is being copied from the first

parent to a child. After that, missing elements are taken from second parent, start-
ing right after the area of chosen segment and then continuing from the beginning
of permutation [11].

In experiments, for chromosomes coded as permutations, following mutation
operators were used:

– SWAP – it is based on swapping places of two randomly selected keys of permu-
tation [8, 11]

– SCRAMBLE – elements on k randomly selected positions are randomly per-
muted (within selected positions only) [11]

– INSERTION – random element is put on a new randomly selected position [11].
In [8] this mutation has been used In slightly different form.

– SHIFT – random segment of permutation is moved to a different location [13].
– INVERSION – the order of random segment elements is reversed [11].

Diversity measurements of population The need of taking measurements of pop-
ulation diversity has many reasons of diagnostic nature. As [5] states, diversity mea-
surements can be divided on: genotypic – which informs about differences between
chromosomes, and phenotypic – that deals with differences in fitness values of pop-
ulation individuals. The first ones are usually more time consuming and the second
ones are less accurate.

In this work, genotypic measure that were computed during the experiments
is modified version of linear diversity measure for permutations that has O(n) time
complexity. Its original version was designed by Dudek M. and presented in [5].

83

Michał Wołosik, Marek Tabędzki

LMRDPPOP =
1

n+1

(
PZdi f −1

n−1
+

n

∑
i=1

LPi−2
n−3

)
, LMRDPPOP ∈ [0,1] (6)

where:

– n – number of nodes – problem size (for example, number of keys in chromosome
of coded keyboard)

– LPi – number of different connections from node i, or 2 if all are identical
– PZdi f – number of different first nodes of permutations within a population, pos-

sible values are in range [1,n]

Diversity in population is equal to 0 if all chromosomes are identical. On the
other hand, the measure takes the value of 1 when starting nodes of permutations do
not repeat and each node has connection to every other nodes within a population
permutations. Maximal number of such connections for one node is n−1.

4.2 Adaptive methods for mutation

Publication [13] describes mechanisms, inter alia, AOC and MOS, which are based
on usage of many mutation operators during one evolutionary algorithm. It suppose
to increase the chance of leaving the local optimum.

AOC (Adaptive operator cycling) – mechanism of exchange is run periodically,
after each execution of specific number of generations – so called adaptive period,
and at least one mutation has been performed since previous period has finished.
Probability of operator exchange is based on success rate factor rs, which is the ratio
of success mutations to all mutations of current adaptive period. Formula looks like
this:

POC =
1
2
(1+ cos(rs ·π)) (7)

AOC2 slightly differs from metod described above. Attempt to exchange muta-
tion operator occurs when in actual adaptive period all mutation were not successful.

MOS (Mutation operators statstics) – at the end of each adaptive period, this
metod recalculates success rates rsi for each i-th mutation operator. Calculation is
based on previous adaptive period. In each generation, with some rsi based probabil-
ity, a choice is being made which mutation operator should be use on given parent
individual. In order to give a chance for mutation with rsi equal to 0 to be selected,

84

Screen keyboard arrangement optimization for Polish language

in [13] usage of bi parameter was proposed. It is calculated at the end of each adaptive
period for each i-th mutation.

bi = (rand(0;1)−0.5) ·a (8)

Pchi =

{ max(0;rsi+bi)
∑

n
j=1 max(0;rs j+b j)

, for ∑
n
j=1 max(0;rs j +b j) 6= 0

1
n , for ∑

n
j=1 max(0;rs j +b j) = 0

(9)

where:

– rand(0;1) – random value from [0,1] uniform distribution
– a – parameter which was found experimentally in [13] as 0.02
– Pchi – probability of i-th mutation selection
– n – mutations quantity

4.3 Simulated annealing algorithm

One of the approaches used in the keyboard arrangement problem, is simulated an-
nealing algorithm and hybrid solutions combining it with genetic algorithms [1,3,8].
This algorithm operates on one individual, every step trying to replace it with a neigh-
bor that is created using chosen mutation operator. The method introduces a parame-
ter called the temperature, which is gradually reduced at a certain number of iterations
(epoch). At higher temperature the probability that an individual will be replaced by
a worse neighbor is higher.

Other parameters of simulated annealing approach are: α – thermal melting
point, i.e. the rate at which the temperature decreases (usually in the range 0.95–
0.98), Lmin – initial length of the epoch, i.e. the number of iterations at the same
temperature, Lmax – maximum epoch length, β – the rate at which the length of the
epoch grows.

This research is based on acceptance probability (the probability of substituting
the current individual with the one obtained as a result of mutation) taken from [1]
and [3]. Besides the temperature, it also takes into account the difference in the fitness
values of the two individuals. Assuming that f is the fitness of the current individual,
f ′ is the fitness of considered neighbor, and T is the current temperature, the formula
looks as follows:

Psubst =

{
1, if f ′ < f

e−
f ′− f

T , if f ′ ≤ f
(10)

85

Michał Wołosik, Marek Tabędzki

5. Experiments and result analysis

Application for testing purposes was written in Java (JDK ver. 1.7) using NetBeans
IDE (ver. 8.0.2). Some parts of the algorithms, including the fitness function cal-
culation, has been parallelized. Tests were performed on a machine with quad-core
processor Intel Core i7-2630QM 2.00GHz. Tests were conducted for a total of 15
optimization approaches: GA with 9 combinations of crossover and mutation opera-
tors, 3 adaptive mutation operators without crossover, and simulated annealing with
3 different mutation operators. Each of the approaches was run 10 times for each of
the three text blocks, and the results were averaged.

5.1 Genetic algorithms

In experiments, the following parameters of GA were adopted: population size of
200, SUS selection with parental pool of 50, and rank-based selection. Crossover
probability was 0.9 and mutation probability was 0.15. Termination condition: reach-
ing 2,000 generations. The column “Operators” of the following table contains infor-
mation about which crossover and mutation operators were used. For the SCRAM-
BLE operator, parameter k was equal to 3.

Table 1. Results for genetic algorithms

Operators
Best

initial
Average
initial

Best
final

(MBF)

Average
final

Gain
Running
time [s]

UX, SWAP 0.86457 0.99367 0.69951 0.70412 19% 24.26917
UX, SCRAMBLE 0.86611 0.99456 0.69882 0.69996 19% 24.80797
UX, INSERTION 0.86581 0.99394 0.69882 0.73335 19% 26.65170

PMX, SWAP 0.85778 0.99408 0.69500 0.70019 19% 25.11970
PMX, SCRAMBLE 0.86669 0.99438 0.69537 0.69747 20% 24.97160
PMX, INSERTION 0.86321 0.99415 0.69460 0.70439 20% 24.76830

OX, SWAP 0.86522 0.99287 0.70184 0.71601 19% 25.34267
OX, SCRAMBLE 0.86923 0.99431 0.70205 0.70547 19% 24.79710
OX, INSERTION 0.85807 0.99361 0.70567 0.72059 18% 25.32400

There were no major differences in average values of the reached fitting. Best
MBF of 0.6946 was obtained using PMX crossover and INSERTION mutation. How-
ever, the top average of the final fitness (of 0.69747) was for the SCRAMBLE mu-
tation with the same PMX crossover operator. The worst results were obtained with
OX crossover, for which none of the final fitness drops below 0.7.

86

Screen keyboard arrangement optimization for Polish language

The sharp decline in the cost function took place in the initial phase of the al-
gorithm – the first 250 generations, and then decreased gently. Population converged
rapidly to the same time. After about 250 generations, the value LMRDP stabilized
more or less on the value of 0.3.

5.2 Genetic algorithms with adaptive mutation

In experiments using adaptive mutation operator, an adaptation period was of 200
iterations, and the algorithm was stopped after 4,000 iterations. Adaptations AOC
and AOC2 were using only SWAP and INSERT mutation operators, while MOS – all
of listed in section 4.1. For SCRAMBLE mutation value k was set to 3.

Table 2. Results for genetic algorithms with adaptive mutation

Adaptation
method

Best
initial

Average
initial

Best
final

(MBF)

Average
final

Gain
Running
time [s]

AOC 0.86325 0.99440 0.69119 0.75307 20% 105.4112
AOC2 0.86239 0.99479 0.69061 0.74204 20% 104.0792
MOS 0.86009 0.99279 0.69019 0.76860 20% 103.3855

The final value of MBF are comparable for all types of adaptation. It is note-
worthy that the results were somewhat better than in the case of not using adaptation
algorithms. The best mean fitness of the best individuals was obtained for MOS adap-
tation (it equals 0.69019). Interestingly, this method also gave the worst mean fitness
of average individuals (of 0.76860), which means poor stability. In this case, the best
value was obtained for AOC2 approach (of 0.74204).

Success rate of the GA with the AOC adaptation, usually reached a low value
already at the end of the first adaptive era, and in successive epochs further decreases
and stabilizes around the value of 0.1. Hence the probability of substitution one mu-
tation operator to another was high all the time, and it was swapped at the end of
almost every epoch (ie. every 200 generations).

In the case of AOC2, in the initial phase of the algorithm, when there is a sharp
decline in the cost function, the mutation operator was not changed even once. In the
later stage of evolution, as the fit function decreased more gently, the operator was
changed more often. Using this method, substitution of the mutation operator could
be observed after the 2000 generation.

87

Michał Wołosik, Marek Tabędzki

With the MOS adaptation approach, all mutation operators implemented in the
application were used. In each generation of evolutionary algorithm, the decision
which mutation operator to use was taken repeatedly. This results in that new indi-
viduals are produced in a less stable manner – diagrams were more irregular.

5.3 Simulated annealing

For simulated annealing approach the following parameters were adopted: initial tem-
perature of 0.1 and the final temperature of 10−5, whose achievement was a termi-
nation condition. The initial size of epoch was 10 iterations, and the maximum was
500. The cooling coefficient was α = 0.95, and the growth factor was β = 1.2. This
gives a total of 81,183 iterations.

Table 3. Results for simulated annealing

Mutation Initial Final Gain Average time [s]

SWAP 0.98105 0.68947 30% 295.9947
SCRAMBLE k = 3 1.00439 0.69017 31% 315.0103

INSERTION 1.01540 0.71162 30% 294.1847

The best mean fitness of final individuals for all tests was obtained for SWAP
mutation. It equals 0.68947. Simulated annealing algorithm yielded slightly better
results than adaptive mutation approach.

Fig. 5. Fitness for simulated annealing with SWAP mutation

88

Screen keyboard arrangement optimization for Polish language

As a result of the specificity of the simulated annealing algorithm, in the initial
phase (at high temperatures) the probability to replace the current individual by worse
one is high. This is reflected in the chart above – the beginning is more jagged.

5.4 The best keyboard arrangements found

The best keyboard arrangement was obtained using the simulated annealing algo-
rithm. For the OM text (“With Fire and Sword”), the same arrangement was found us-
ing SA algorithm with SWAP and SCRAMBLE mutation operators. Its fitness value
for this text was 0.68759101. Best keyboard for PT (“Sir Thaddeus”) was obtained
using SA with SWAP mutation (fitness of 0.69209257). The best fitness for the text
WI (diploma guidelines) was 0.67895839. It was achieved by SA with SCRAMBLE
mutation.

The following table shows the values of matching the best found keyboard ar-
rangements for each of the test texts. Table rows correspond to the keyboards, and
the column – blocks of text.

Table 4. Fitness of the top keyboards tested on different blocks of text

OM PT WI Average

OM keyboard 0.68759101 0.71119728 0.69419239 0.69766023
PT keyboard 0.69542199 0.69209257 0.69207537 0.69319664
WI keyboard 0.72413948 0.73202195 0.67895839 0.71170661

Keyboard trained on the WI text has poor fit for other blocks of text. Appar-
ently it overfitted to the content of this particular document. The best average cost of
rewriting all the texts was obtained with a keyboard optimized on the PT block. Its
arrangement is shown on Fig. 6.

It is worth to compare the optimized keyboard with the other ones. Unfortu-
nately, as noted by Herma in [7] there are no specific arrangements dedicated to the
Polish language. Therefore, a comparison with to other popular arrangements was
conducted – QWERTY and DVORAC. Table 5 summarizes the matching function
(FFIT) of said keyboards to that shown in Fig. 6 (PL_OPT). The table also includes
time needed to rewrite each of the test blocks of text, estimated on the basis of the
Fitts’s law.

As can be seen, optimized keyboard has been rated as better than the QWERTY
layout by about 30% from the perspective of the text of the novel “With Fire and

89

Michał Wołosik, Marek Tabędzki

Fig. 6. The best keyboard arrangement for Polish language found

Table 5. Comparison results for different keyboard arrangements

OM PT WI

FFIT time [h] FFIT time [h] FFIT time [h]

QWERTY 1.0000 197:29 1.0000 58:01 1.0000 2:47
DVORAC 1.0748 208:03 1.0923 61:11 1.1208 3:00
PL_OPT 0.6954 158:52 0.6921 46:50 0.6921 2:14

Sword” and about 31% from the perspective of the poem “Sir Thaddeus” and the
document WI (diploma guidelines). Using keyboard arrangement tuned to the Polish
language, the average time gain (in relation to the QWERTY keyboard) is 19.52%.

6. Conslusions and final thoughts

The goal of this work was to develop keyboard arrangement optimal for Polish lan-
guage. Taking the standard, rectangular layout and set of keys of QWERTY keyboard
(Polish programmer variant), optimal permutation was searched for, taking into ac-
count criteria of distance and position. For this purpose, authors used methods of
machine learning such as evolutionary algorithms and simulated annealing.

This goal was fully achieved. Among numerous arrangements, found in experi-
ments with different algorithms and sets of text, one was selected, featuring the best
mean fitness. In other words, selected arrangement is well suited to the specifics of
the Polish language, and is not overfitted to a specific block of text. The multicriterial
function, used to evaluate keyboard arrangement, showed that the found keyboard
gives more that 30% better fit over the standard QWERTY arrangement. Basing on
the estimation of the typing time, calculated according to the Fitts’s law, was shown
that the time cost of writing text in is smaller than in the case of QWERTY and
DVORAC keyboards. The results are very promising and encourage to the practical
realization of such a keyboard arrangement.

90

Screen keyboard arrangement optimization for Polish language

There are many possibilities of future research. Authors consider conducting
experiments using other algorithms or different sets of text. The most interesting
research direction is to give up standard keyboard layout and try to find a different
one, of custom shape.

It should be noted however, that regardless of the calculated costs and fitness, a
very important factor is the habits of the target users. If you are not accustomed to the
new arrangement, you will have to spend some time relearning the keyboard layout
to achieve greater typing speed than with QWERTY. Is the final profit from using the
optimized keyboard is worth the time spent on getting used to it? It depends on the
individual needs and expectations of each of us.

References

[1] Navid Samimi Behbahan. Optimization of farsi letter arrangement on keyboard
by simulated annealing and genetic algorithms. Majlesi Journal of Multimedia
Processing, 2012.

[2] Randy Cassingham. The dvorak keyboard. http://www.dvorak-keyboard.
com. Retrived: 2016-01-23.

[3] Mauro Dell’Amico, José Carlos Díaz Díaz, Manuel Iori, and Roberto Monta-
nari. The single-finger keyboard layout problem. Computers & Operations
Research, 36(11):3002–3012, 2009.

[4] Richard Dickenson. Did sholes and densmore know what they were doing when
they designed their keyboard? ETCetera – Journal of the Early Typewriter
Collectors Association, 1989.

[5] Bogusław Filipowicz, Wojciech Chmiel, Maciej Dudek, and Piotr Kadłuczka.
Efektywność wielopopulacyjnego algorytmu ewolucyjnego dla zagadnień per-
mutacyjnych. Automatyka/Akademia Górniczo-Hutnicza im. Stanisława Stasz-
ica w Krakowie, 15:147–158, 2011.

[6] Jeffrey S Goettl, Alexander W Brugh, and Bryant A Julstrom. Call me e-mail:
arranging the keyboard with a permutation-coded genetic algorithm. In Pro-
ceedings of the 2005 ACM symposium on Applied computing, pages 947–951.
ACM, 2005.

[7] Mariusz Herma. Na tropie polskiej klawiatury. http://www.polityka.pl.
Retrived: 2016-09-05.

[8] Manar I Hosny, Nourah Alswaidan, and Abir Benabid Najjar. An optimized
single-finger arabic keyboard layout. In Science and Information Conference
(SAI), 2014, pages 321–328. IEEE, 2014.

[9] Wojciech Kulik. Klawiatura ekranowa kalq przyspieszy o 34% pisanie na table-
tach i smartfonach. http://www.benchmark.pl/. Retrived: 2016-09-01.

91

Michał Wołosik, Marek Tabędzki

[10] Yanzhi Li, Lijuan Chen, and Ravindra S Goonetilleke. A heuristic-based ap-
proach to optimize keyboard design for single-finger keying applications. In-
ternational Journal of Industrial Ergonomics, 36(8):695–704, 2006.

[11] Alberto Moraglio and Riccardo Poli. Geometric crossover for the permutation
representation. Intelligenza Artificiale, 5(1):49–63, 2011.

[12] Tania Pencheva, Krassimir Atanassov, and Anthony Shannon. Modelling of
a stochastic universal sampling selection operator in genetic algorithms using
generalized nets. In Proceedings of the Tenth International Workshop on Gen-
eralized Nets, Sofia, pages 1–7, 2009.

[13] Aleksandar Prokopec and Marin Golub. Adaptive mutation operator cycling. In
Applications of Digital Information and Web Technologies, 2009. ICADIWT’09.
Second International Conference on the, pages 634–639. IEEE, 2009.

[14] Marc Oliver Wagner, Bernard Yannou, Steffen Kehl, Dominique Feillet, and Jan
Eggers. Ergonomic modelling and optimization of the keyboard arrangement
with an ant colony algorithm. Journal of Engineering Design, 14(2):187–208,
2003.

[15] Sławomir Tadeusz Wierzchoń. Sztuczne systemy immunologiczne: teoria i zas-
tosowania. Akademicka Oficyna Wydawnicza EXIT, 2001.

[16] Wikipedia. Keyboard layout. https://en.wikipedia.org/wiki/Keyboard_
layout. Retrived: 2016-08-23.

List of Abbreviations

AOC Adaptive operator cycling
GA Genetic algorithm
KAP Keyboard arrangement problem
MBF Mean best fitness
MOS Mutation operators statistics
OX Order crossover
PMX Partially mapped crossover
QAP Quadratic assignment problem
SA Simulated annealing
SFKL Single finger keyboard layout
SUS Stochastic universal sampling
UX Uniform crossover

92

Screen keyboard arrangement optimization for Polish language

OPTYMALIZACJA UKŁADU KLAWIATURY
EKRANOWEJ DLA JĘZYKA POLSKIEGO

Streszczenie Celem niniejszej pracy było opracowanie układu klawiatury ekranowej prze-
znaczonej dla języka polskiego. Przyjęto standardowy kształt i organizację klawiatury, zatem
jest to zadanie wskazania najlepszej permutacji klawiszy, przy czym permutacji podlegały
jedynie klawisze znaków alfabetu oraz pięć wybranych znaków interpunkcyjnych. W celu
realizacji tak określonego zadania, posłużono się metodami uczenia maszynowego: algo-
rytmami genetycznymi oraz algorytmem symulowanego wyżarzania. Funkcja dopasowania
opiera się na dwóch utworach literackich oraz jednym dokumencie technicznym. Zastoso-
wano kryteria odległości oraz lokalizacji klawiszy (biorąc pod uwagę kierunek pisania oraz
wagi rzędów). Aplikację przygotowaną w celu wykonania badań eksperymentalnych opra-
cowano w języku Java. W pracy opisano zastosowane algorytmy oraz przedstawiono wyniki
uzyskane na drodze eksperymentów. Najlepsze znalezione układy pozwoliłyby skrócić czas
wprowadzania przykładowych tekstów o około 30% (zakładając odpowiednie opanowanie
nowego układu przez piszącego).

Słowa kluczowe: optymalizacja układu klawiatury, algorytmy genetyczne, symulowane
wyżarzanie

Artykuł zrealizowano w ramach pracy badawczej S/WI/2/2013 i sfinansowano ze
środków na naukę MNiSW.

93

