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Abstract: We consider a probabilistic logic of programs. In [6] it is proved that the set
of formulas of the logic PrAL, valid in a finite structure, is decidable with respect to the
diagram of the structure. We add to the language LP of PrAL a sign

⋃
and a functor lg.

Next we justify that the set of formulas of extended logic, valid in a finite at least 2-element
structure (for L+

P ) is undecidable.
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1. Introduction

In [6] the Probabilistic Algorithmic Logic PrAL is considered, constructed for ex-
pressing properties of probabilistic algorithms understood as iterative programs with
two probabilistic constructions x := random and eitherp ... or ... ro. In order to de-
scribe probabilities of behaviours of programs a sort of variables (interpreted as real
numbers) and symbols +,−, ∗, 0, 1, < (interpreted in the standard way in the ordered
field of real numbers) was added to the language LP of PrAL.

In the paper [5] the changes of information which depend on realizations of
probabilistic program was considered. That’s why the language LP was extended by
adding the sign

⋃
(called the existential iteration quantifier) and the functor lg (for the

one-argument operation of a logarithm with a base 2 interpreted in the real ordered
field). The new language was denoted by L+

P .
The paper [6] contains an effective method of determining probabilities for prob-

abilistic programs interpreted in a finite structure. The effectiveness of the method
leads to the decidability of the set of formulas of LP, valid in a fixed finite structure
(provided that we have at our disposal a suitable finite part of the diagram of the struc-
ture). Here we shall justify that the set of probabilistic algorithmic formulas of L+

P ,
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valid in an arbitrary, finite at least 2-element structure, is undecidable with respect to
its diagram.

We shall start from a presentation of the syntax and the semantics of the language
L+

P . We use the syntax and the semantics of LP proposed by W. Danko in [6].

2. Syntax and Semantics of L+
P

A language LP is an extension of a first-order language L and includes three kinds of
well-formed expressions: terms, formulas and programs. As mentioned above, the al-
phabet of L+

P contains two additional elements: the arithmetic one-argument functor
lg and the sign

⋃
(the existential iteration quantifier). An interpretation of L+

P relies
on an interpretation of the first-order language L in a structure ℑ (We take into con-
sideration only finite structures. By finite structure we mean a structure with a finite,
at least 2-element set A.) and on the standard interpretation of the language Lℜ in the
ordered field of real numbers (cf. [6]).

The alphabet of the language L+
P contains

– a set of constants CP, which consists of a finite subset C = {c1, . . . ,cu} of symbols
for each element of the set A = {a1, . . . ,au}, a subset Cℜ of real constant symbols
and a subset CL of logical constant symbols,

– an enumerable set VP = {V ∪ Vℜ

⋃
V0} of variables, where a subset V =

{v0,v1, . . .} consists of non-arithmetic individual variables, a subset Vℜ =
{x0,x1, . . .} contains real variables and a subset V0 = {q0,q1, . . .} contains propo-
sitional variables,

– a set of signs of relations ΨP = {Ψ∪Ψℜ}, where the subset Ψ consists of non-
arithmetic predicates and the subset Ψℜ = {<ℜ, =ℜ} contains arithmetic predi-
cates,

– an enumerable set of functors ΦP = {Φ∪Φℜ}, which consists of the subset Φℜ =
{+,−,∗,lg} of symbols for arithmetic operations and the subset Φ of symbols for
non-arithmetic operations,

– the set {¬,∧,∨,⇒,⇔} of logical connectives,
– the set {if, then, else, fi, while, do, od, either, or, ro, randoml

1} of symbols for
program constructions,

– the set {∃,∀} of symbols for classical quantifiers (for real variables only),
– the existential iteration quantifier

⋃
,

1 For each probability distribution defined on a set A we generate a different random assignment. We
use a number l to distinguish them.
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– the set {(,)} of auxiliary symbols.

In the language L+
P we distinguish two kinds of terms (arithmetic and non-

arithmetic), formulas (classical and algorithmic) and programs.
The set of terms TP = {T ∪ Tℜ} of L+

P consists of a subset of non-arithmetic
terms T and a subset Tℜ of arithmetic terms.

Definition 2.1 The set T of non-arithmetic terms is defined as the smallest set of
expressions satisfying the following conditions:
– each constant of C and each variable of V belongs to T ,
– if φi ∈ Φ (φi – an ni-argument functor (ni ≥ 0)) and τ1, . . . ,τni ∈ T then an
expression φi(τ1, . . . ,τni) belongs to T .

Definition 2.2 The set Tℜ of arithmetic terms is the smallest set such that:
– each constant of Cℜ and each real variable of Vℜ belongs to Tℜ,
– if t1, t2 ∈ Tℜ then expressions t1 + t2, t1− t2, t1 ∗ t2, lg t1 belong to Tℜ,
– if α is a formula of L then P(α) belongs to Tℜ. (We read the symbol P as follows
"probability that".)

Definition 2.3 The set FO of open formulas is the smallest set such that:
– if τ1, . . . ,τm j ∈ T and ψ j ∈ Ψ (ψ j – an m j-argument predicate) then
ψ j(τ1, . . . ,τm j) ∈ FO,
– if α,β ∈ FO then expressions ¬α, α∨β, α∧β, α⇒ β, α⇔ β belong to FO.

Definition 2.4 The set Π of all programs is defined as the smallest set of expressions
satisfying the following conditions:
– each expression of the form v := τ or v :=randoml , where v ∈ V , τ ∈ T is a
program,
– if γ ∈ FO and M1,M2 ∈Π then expressions M1;M2, if γ then M1 else M2 fi, while γ

do M1 od, eitherp M1 or M2 ro (p is a real number) are programs.

We establish that in an expression
⋃

Kα (where K is a program) the letter α

denotes a formula which does not contain any iteration quantifiers.

Definition 2.5 The set FP of all formulas of the language L+
P is the smallest extension

of the set FO such that:
– if t1, t2 ∈ Tℜ then t1 =ℜ t2, t1 <ℜ t2 belong to FP,
– if α,β ∈ FP then the expressions ¬α, α∨β, α∧β, α⇒ β, α⇔ β belong to FP,
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– if α ∈ FP and x ∈Vℜ is a free variable in α then ∃xα, ∀xα belong to FP,
– if K ∈Π and α ∈ FP then Kα is a formula of FP,
– if K ∈Π and α ∈ FP then

⋃
Kα belongs to FP.

A variable x is free in a formula α if x is not bounded by any quantifier.
Let L+

P be a fixed algorithmic language of the type < {nk}φk∈ΦP , {ml}ψl∈ΨP >
and let a relational system ℑ =< A∪R; {φkℑ}φk∈ΦP , {ψlℑ}ψl∈ΨP > (which consists
of the fixed, finite, at least 2-element set A, the set R of real numbers, operations and
relations) be a fixed data structure for L+

P .
We interpret non-arithmetic individual variables of L+

P as elements of A. Real
variables are interpreted as elements of the set R of real numbers.

Let’s denote the set of possible valuations w of non-arithmetic variables by W .

Definition 2.6 By the interpretation of a non-aritmetic term τ of LP in the structure
ℑ we mean a function τℑ : W 7→ A which is defined recursively.
– If τ is a variable v ∈V then vℑ(w)

d f
= w(v).

– If τ is of the form φ(τ1, . . . ,τn), where τ1, . . . ,τn ∈ T and φ ∈ Φ is an n-argument
functor then φ(τ1, . . . ,τn)ℑ(w)

d f
= φℑ(τ1ℑ(w), . . . ,τnℑ(w)), where τ1ℑ(w), . . . ,τnℑ(w)

are defined earlier.

To interpret random assignments (i.e. constructions of the form v :=randoml) in
a probabilistic way we assume that there exists a fixed probability distribution defined
on A

ρl : A 7→ [0,1],
u

∑
i=1

ρl(ai) = 1.

Definition 2.7 (cf. [6]) A pair < ℑ,ρ >, where ρ is a set of fixed probability
distributions ρl defined on A and ℑ is a structure for L+

P , is called a probabilistic
structure. In this structure we interpret probabilistic programs.

By M we denote the set of all probability distributions defined on the set W of
valuations of non-arithmetic variables such that

µ : W 7→ [0,1], ∑
wi∈W

µ(wi)≤ 1.

By S we mean the set of all states, i.e. all pairs s =< µ,wℜ >, where µ is
a probability distribution of valuations of non-arithmetic variables and wℜ is a
valuation of real variables of Vℜ.
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Definition 2.8 (cf. [6]) A probabilistic program K is interpreted in the structure
< ℑ,ρ > as a partial function transforming the set of states into the set of states

K<ℑ,ρ> : S 7→ S.

Let K(v1, . . . ,vh) represent a fixed program in L+
P . An arbitrary program K con-

tains only a finite number of non-arithmetic variables. We denote this set of variables
by V = {v1, . . . ,vh}. Since A = {a1, . . . ,au} is also a finite set, then a set of all possi-
ble valuations of program variables will be also finite. We denote it by {w1, . . . ,wn},
where n = uh.

Let’s notice that programs do not operate on variables of Vℜ. Thus we can inter-
pret an arbitrary program K as partial functions transforming probability distributions
defined on the set of valuations of program variables (cf. [6])

K<ℑ,ρ> : M 7→M .

If µ is the input probability distribution of valuations of program variables (input
probability distribution for short) then a realization of a program K leads to a new
output probability distribution µ

′
of valuations of program variables (output proba-

bility distribution for short). A distribution µ (µ
′
) associates with each valuation w of

program variables a corresponding probability of its appearance.
The interpretation of program constructions (used in this paper) can be found in

the Appendix.
An arithmetic term of the form P(α) denotes the probability, that the formula α

of L is satisfied at a distribution µ (cf. [6])
[P(α)]ℑ(s) = ∑w∈W α µ(w), where W α = {w ∈W : ℑ,w |= α}.

Let s =< µ,wℜ > be a state and let s
′
=< µ

′
,wℜ > represent the state s

′
=

K<ℑ,ρ>(s).
Given below is the interpretation of a formula Kα (α ∈ FP and K ∈Π).

(Kα)<ℑ,ρ>(s) =
{

α<ℑ,ρ>(s
′
) if K<ℑ,ρ>(s) is defined and s

′
= K<ℑ,ρ>(s)

is not defined otherwise

The satisfiability of a formula Kα, where α ∈ FP and K ∈ Π, is defined in the
following way (cf. [6])

< ℑ,ρ >,s |= Kα iff < ℑ,ρ >,s
′ |= α, where s

′
= K<ℑ,ρ>(s).

The next definition establishes the meaning of the existential iteration quantifier
(K ∈Π, α ∈ FP).
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(
⋃

Kα)<ℑ,ρ>(s)
d f
=

l.u.b.
i∈N (Kiα)<ℑ,ρ>(s).

We can informally express the formula
⋃

Kα in the following way α∨Kα∨K2α∨ . . .
The satisfiability of a formula

⋃
Kα (K ∈ Π, α ∈ FP) is defined as an infinite

alternative of formulas (Kiα) for i ∈ N.

Example 2.10 Now we shall present a formula which contains the iteration quantifier.
Let’s consider the formula β : K0

⋃
Kα such that

K0: v1 := 0;
K : if (v1 = 0) then v1 :=random1; v2 := 0; else v2 := 1; fi
α: x = P(v1 = 1 ∨ v2 = 0)

where K0 and K are programs interpreted in the structure < ℑ,ρ > with a 2-element
set A= {0,1}. For a random assignment v1 :=random1 we define the probability dis-
tribution ρ1 = [0.5,0.5]. The set of possible valuations of program variables contains
4 elements: w1 = (0,0), w2 = (0,1), w3 = (1,0), w4 = (1,1). We carry out compu-
tations for the input probability distribution µ = [0.25,0.25,0.25,0.25]. P(γ) denotes
the probability that γ is satisfied (at a distribution µ). Let’s notice, that formula β

describes the following fact
(x = 0)∨ (x = 0.5)∨ (x = 0.5∗0.5)∨ (x = 0.5∗0.5∗0.5)∨ . . ..

3. The proof of the main lemma

As we have mentioned (it is proved in [6]), the set of probabilistic algorithmic formu-
las of PrAL valid in a finite structure for LP is decidable with respect to the diagram
of the structure. By the diagram D(ℑ) of the structure ℑ we understand the set of
all atomic or negated atomic formulas φ(ci1 , . . . ,cim) = ci0 (φ is a functor of L) and
ψ(ci1 , . . . ,cim) (ψ is a predicate symbol of L), which are valid in ℑ.

The proof of decidability of PrAL essentially uses the Lemma which reduces the
problem of validity of sentences of LP to the (decidable) problem of the validity of
sentences of the first-order arithmetic of real numbers. Finally, it appears that the set
of formulas of PrAL, valid in all at most u-element structures for LP, is decidable.

We shall show that if the language L+
P contains additionally the sign

⋃
and

the functor lg (for the operation of a logarithm) we can define natural numbers and
operations of addition and multiplication for natural numbers.

Let’s assume that 0.5i abbreviates the expression 0.5∗0.5∗ ...∗0.5︸ ︷︷ ︸
i times

.
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Lemma 3.1 Let < ℑ,ρ > be an arbitrary fixed probabilistic structure (for L+
P ) with a

finite set A = {a1,a2, . . . ,au}, where u > 1. Let K0 and K be as follows

K0: v1 := au;
K : if (v1 = au) then

either0.5 v1 := au; v2 := au; or v1 := au−1; v2 := au; ro
else v1 := a1; v2 := au; fi

For an arbitrary natural number i > 0, if µ = [µ1,µ2, . . . ,µu2 ] is an input probability
distribution then as a result of realization of program K0;Ki we obtain the following
output probability distribution

µ
′
= K0Ki

<ℑ,ρ>(µ) = [0, . . . ,0︸ ︷︷ ︸
u−1 times

,1−0.5(i−1), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5i, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5i].

Proof. Let us assume that < ℑ,ρ > is a fixed probabilistic structure (for L+
P )

with a finite at least 2-element set A = {a1,a2, . . . ,au}. Let’s consider an arbitrary
program K0;Ki (i∈N+). The set of possible valuations of program variables contains
u2 elements: w1 = (a1,a1), w2 = (a1,a2), . . ., wu = (a1,au), wu+1 = (a2,a1),
wu+2 = (a2,a2), . . ., w2u = (a2,au), . . .,wu2−u+1 = (au,a1), wu2−u+2 = (au,a2), . . .,
wu2 = (au,au). We carry out computations for the input probability distribution
µ =[µ1,µ2, . . . ,µu2 ]. The proof of the Lemma 3.1 will proceed by induction on the
length of programs.

(A) The base of induction.

First we shall justify that the realization of the program K0;K leads to the prob-
ability distribution
µ
′
= K0K<ℑ,ρ>(µ) = [ 0, . . . ,0︸ ︷︷ ︸

u2−u−1 times

,0.5, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5].

We shall determine the necessary probability distributions (cf. the Appendix).
[v1 := a1]<ℑ,ρ>(µ) = [µ1 + µu+1 + . . .+ µu2−u+1,µ2 + µu+2 + . . .+ µu2−u+2, . . . ,µu +
µ2u + . . .+µu2 , 0, . . . ,0︸ ︷︷ ︸

u2−u times

]

[v1 := au−1]<ℑ,ρ>(µ) = [ 0, . . . ,0︸ ︷︷ ︸
u2−2u times

,µ1 + µu+1 + . . . + µu2−u+1,µ2 + µu+2 + . . . +

µu2−u+2, . . . ,µu +µ2u + . . .+µu2 ,0, . . . ,0︸ ︷︷ ︸
u times

]
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[v1 := au]<ℑ,ρ>(µ) = [ 0, . . . ,0︸ ︷︷ ︸
u2−u times

,µ1 + µu+1 + . . . + µu2−u+1,µ2 + µu+2 + . . . +

µu2−u+2, . . . ,µu +µ2u + . . .+µu2 ]
[v2 := au]<ℑ,ρ>(µ) = [0, . . . ,0︸ ︷︷ ︸

u−1 times

,µ1 + µ2 + . . . + µu, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,µu+1 + µu+2 + . . . +

µ2u, 0, . . . ,0︸ ︷︷ ︸
u−1 times

, . . . , 0, . . . ,0︸ ︷︷ ︸
u−1 times

,µu2−u+1 +µu2−u+2 + . . .+µu2 ]

Let’s denote the subprogram v1 := au; v2 := au; by N1.

N1<ℑ,ρ>(µ) = [v2 := au]<ℑ,ρ>([v1 := au]<ℑ,ρ>(µ)) =
= [ 0, . . . ,0︸ ︷︷ ︸

u2−1 times

,(µ1 + µu+1 + . . .+ µu2−u+1)+ (µ2 + µu+2 + . . .+ µu2−u+2)+ . . .+(µu +

µ2u + . . .+µu2)] =
= [ 0, . . . ,0︸ ︷︷ ︸

u2−1 times

,µ1 +µ2 + . . .+µu2 ] = [ 0, . . . ,0︸ ︷︷ ︸
u2−1 times

,1]

By N2 we denote the subprogram v1 := au−1; v2 := au;.

N2<ℑ,ρ>(µ) = [v2 := au]<ℑ,ρ>([v1 := au−1]<ℑ,ρ>(µ)) =
= [ 0, . . . ,0︸ ︷︷ ︸

u2−u−1 times

,(µ1+µu+1+ . . .+µu2−u+1)+(µ2+µu+2+ . . .+µu2−u+2)+ . . .+(µu+

µ2u + . . .+µu2),0, . . . ,0︸ ︷︷ ︸
u times

] =

= [ 0, . . . ,0︸ ︷︷ ︸
u2−u−1 times

,µ1 +µ2 + . . .+µu2 ,0, . . . ,0︸ ︷︷ ︸
u times

] = [ 0, . . . ,0︸ ︷︷ ︸
u2−u−1 times

,1,0, . . . ,0︸ ︷︷ ︸
u times

]

The subprogram v1 := a1; v2 := au; we denote by N3.

N3<ℑ,ρ>(µ) = [v2 := au]<ℑ,ρ>([v1 := a1]<ℑ,ρ>(µ)) =
= [0, . . . ,0︸ ︷︷ ︸

u−1 times

,(µ1 + µu+1 + . . .+ µu2−u+1) + (µ2 + µu+2 + . . .+ µu2−u+2) + . . .+ (µu +

µ2u + . . .+µu2), 0, . . . ,0︸ ︷︷ ︸
u2−u times

] =

= [0, . . . ,0︸ ︷︷ ︸
u−1 times

,µ1 +µ2 + . . .+µu2 , 0, . . . ,0︸ ︷︷ ︸
u2−u times

] = [0, . . . ,0︸ ︷︷ ︸
u−1 times

,1, 0, . . . ,0︸ ︷︷ ︸
u2−u times

]

Let’s denote the subprogram either0.5 N1 or N2 ro by E.

E<ℑ,ρ>(µ) = 0.5∗ (N1<ℑ,ρ>(µ))+0.5∗ (N2<ℑ,ρ>(µ)) =
= 0.5∗ [ 0, . . . ,0︸ ︷︷ ︸

u2−1 times

,µ1+µ2+ . . .+µu2 ]+0.5∗ [ 0, . . . ,0︸ ︷︷ ︸
u2−u−1 times

,µ1+µ2+ . . .+µu2 ,0, . . . ,0︸ ︷︷ ︸
u times

] =
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= [ 0, . . . ,0︸ ︷︷ ︸
u2−u−1 times

,0.5∗ (µ1 + . . .+µu2), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5∗ (µ1 + . . .+µu2)] =

= [ 0, . . . ,0︸ ︷︷ ︸
u2−u−1 times

,0.5, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5]

[(v1 = au)?]<ℑ,ρ>(µ) = [ 0, . . . ,0︸ ︷︷ ︸
u2−u times

,µu2−u+1,µu2−u+2, . . . ,µu2 ]

[¬(v1 = au)?]<ℑ,ρ>(µ) = [µ1,µ2, . . . ,µu2−u,0, . . . ,0︸ ︷︷ ︸
u times

]

K<ℑ,ρ>(µ) = E<ℑ,ρ>([(v1 = au)?]<ℑ,ρ>(µ))+N3<ℑ,ρ>([¬(v1 = au)?]<ℑ,ρ>(µ)) =
= [ 0, . . . ,0︸ ︷︷ ︸

u2−u−1 times

,0.5 ∗ (µu2−u+1 + µu2−u+2 + . . . + µu2), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5 ∗ (µu2−u+1 +

µu2−u+2 + . . .+µu2)]+ [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(µ1 +µ2 + . . .+µu2−u), 0, . . . ,0︸ ︷︷ ︸
u2−u times

] =

= [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(µ1 + µ2 + . . . + µu2−u), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5 ∗ (µu2−u+1 + µu2−u+2 + . . . +

µu2), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5∗ (µu2−u+1 +µu2−u+2 + . . .+µu2)]

Finally

K<ℑ,ρ>(K0<ℑ,ρ>(µ)) = K<ℑ,ρ>([v1 := au]<ℑ,ρ>(µ)) =
= [ 0, . . . ,0︸ ︷︷ ︸

u2−u−1 times

,0.5∗((µ1+µu+1+ . . .+µu2−u+1)+(µ2+µu+2+ . . .+µu2−u+2)+ . . .+

(µu + µ2u + . . .+ µu2)), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5 ∗ ((µ1 + µu+1 + . . .+ µu2−u+1) + (µ2 + µu+2 +

. . .+µu2−u+2)+ . . .+(µu +µ2u + . . .+µu2))] =
= [ 0, . . . ,0︸ ︷︷ ︸

u2−u−1 times

,0.5∗ (µ1 +µ2 + . . .+µu2), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5∗ (µ1 +µ2 + . . .+µu2)] =

= [ 0, . . . ,0︸ ︷︷ ︸
u2−u−1 times

,0.5, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5].

(B) The inductive step.

The inductive assumption. For a certain natural number k, if µ = [µ1,µ2, . . . ,µu2 ] is an
input probability distribution then as a result of realization of the program K0;Kk we
obtain the following output probability distribution
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K0Kk< ℑ,ρ >(µ) =
= [0, . . . ,0︸ ︷︷ ︸

u−1 times

,(1− 0.5(k−1)) ∗ (µ1 + µ2 + . . .+ µu2), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5k ∗ (µ1 + µ2 + . . .+

µu2), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5k ∗ (µ1 +µ2 + . . .+µu2)] =

= [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(1−0.5(k−1)), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5k, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5k]

We shall apply the inductive assumption to show that if we take µ =
[µ1,µ2, . . . ,µu2 ] as the input probability distribution then after the execution of the
program K0;Kk+1 we obtain the following output probability distribution
K0Kk+1

<ℑ,ρ>(µ) = [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(1−0.5k)∗ (µ1 +µ2 + . . .+µu2), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,

0.5(k+1) ∗ (µ1 +µ2 + . . .+µu2), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5(k+1) ∗ (µ1 +µ2 + . . .+µu2)] =

= [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(1−0.5k), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5(k+1), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5(k+1)]

We can express a composition of programs in the following way (cf. the Ap-
pendix)
K0Kk+1

<ℑ,ρ>(µ) = K<ℑ,ρ>(K0Kk
<ℑ,ρ>(µ))

Hence by the inductive assumption
K<ℑ,ρ>(K0Kk

<ℑ,ρ>(µ)) = K<ℑ,ρ>([0, . . . ,0︸ ︷︷ ︸
u−1 times

,(1−0.5(k−1))∗ (µ1 +µ2 + . . .+µu2),

0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

, 0.5k ∗ (µ1 +µ2 + . . .+µu2), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5k ∗ (µ1 +µ2 + . . .+µu2)]) =

= [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(1−0.5(k−1)+0.5k), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5∗0.5k, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5∗0.5k] =

= [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(1−0.5k), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5(k+1), 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5(k+1)]

which accomplishes the inductive proof.
�

Lemma 3.2 Let < ℑ,ρ > be an arbitrary fixed structure (for L+
P ) with a finite set

A = {a1,a2, . . . ,au}, where u > 1. The set of formulas of PrAL+ valid in < ℑ,ρ > is
undecidable.
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Proof. Let < ℑ,ρ > be an arbitrary fixed structure (for L+
P ) with a finite at least

2-element set A = {a1, . . . ,au}. Let’s consider the formula β of the form K0
⋃

Kα,
where K0, K are the programs considered in the Lemma 3.1 and α is as follows

α: x = P(v1 = au−1∧ v2 = au).

The computations are carried out for the input probability distribution µ =
[µ1,µ2, . . . ,µu2 ] and for programs K0 and K0;Ki, where i ∈ N+. Let’s denote
K0<ℑ,ρ>(µ) by η. We know that

η = K0<ℑ,ρ>(µ) = [v1 := au]<ℑ,ρ>(µ) = [ 0, . . . ,0︸ ︷︷ ︸
u2−u times

,µ1 + µu+1 + . . .+ µu2−u+1,µ2 +

µu+2 + . . .+µu2−u+2, . . . ,µu +µ2u + . . .+µu2 ].

By the Lemma 3.1 we obtain that for an arbitrary number i > 0

µ
′
= K0Ki

<ℑ,ρ>(µ) = [0, . . . ,0︸ ︷︷ ︸
u−1 times

,(1−0.5(i−1)), 0, . . . ,0︸ ︷︷ ︸
u2−2u−1 times

,0.5i, 0, . . . ,0︸ ︷︷ ︸
u−1 times

,0.5i].

We recall, that P(v1 = au−1 ∧ v2 = au) = µ
′
(wu2−u), where wu2−u = (au−1,au).

We can notice that for i∈N+ we have µ
′
(wu2−u)= 0.5i and additionally η(wu2−u)= 0.

Therefore the formula β: K0
⋃

Kα describes the following fact

(x = 0)∨ (x = 0.5)∨ (x = 0.25)∨ (x = 0.125)∨ . . .∨ (x = 0.5i)∨ . . .

Let’s notice, that we can define an arbitrary natural number k in the following
way. Let k be a real number

N(k) iff < ℑ,ρ > |= (k = 0∨∃x((k =− lgx)∧K0
⋃

Kα)).

Since the natural numbers were generated among real numbers and operations of
addition and multiplication exist in the structure ℜ =< R;+,−,∗,0,1,<>, we can
define these operations for constructed natural numbers. For arbitrary x0, x1, x2

x0+x1 = x2 iff < ℑ,ρ > |= N(x0)∧N(x1)∧ x2 = x0 + x1,
x0∗ x1 = x2 iff < ℑ,ρ > |= N(x0)∧N(x1)∧ x2 = x0 ∗ x1.

Since T h(< N;+,∗,0,1 >) is undecidable (cf. [2,11,7]), the set of formulas of
considered algorithmic logic, valid in a fixed, finite at least 2-element structure (for
L+

P ) is also undecidable.
�
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4. Appendix (cf. [6])

By the interpretation of a program K of L+
P in the structure < ℑ,ρ > we mean a

function K<ℑ,ρ> : M 7→M which is defined recursively.

– If K is an assignment instruction of the form vr := τ (for vr ∈V , r = 1, . . . ,h and
τ ∈ T ) then
[vr := τ]<ℑ,ρ>(µ) = µ

′
,where

µ
′
(w j) = ∑w∈W r,τ µ(w) for j = 1, . . . ,n and

W r,τ = {w ∈W : w(vr) = τℑ(win)∧∀v∈V\{vr} w(v) = win(v)}.
win denotes an input valuation of program variables.

– If K is a random assignment of the form vr :=randoml (for vr ∈ V , r = 1, . . . ,h
and ρl being a probability distribution defined on A) then
[vr :=randoml]<ℑ,ρ>(µ) = µ

′
, where

µ
′
(w j) = ρl(w j(vr))∗∑w∈W r µ(w) and

W r = {w ∈W : ∀v∈V\{vr} w(v) = win(v)}.

– We interpret the program while ¬γ do v := v od (for v ∈ V and γ ∈ FO) in the
following way
[γ?]<ℑ,ρ>(µ) = [while ¬γ do v := v od]<ℑ,ρ>(µ) = µ

′
, where

µ
′
(w j) =

{
µ(wi) for wi = w j ∧ ℑ,wi |= γ

0 otherwise
We denote this program construction by [γ?].

– If K is a composition of programs M1, M2 and M1<ℑ,ρ>(µ), M2<ℑ,ρ>(µ) are de-
fined then
[M1; M2]<ℑ,ρ>(µ) = M2<ℑ,ρ>(M1<ℑ,ρ>(µ)).

– If K is a branching between the two programs M1, M2 and M1<ℑ,ρ>(µ),
M2<ℑ,ρ>(µ) are defined then
[if γ then M1 else M2 fi]<ℑ,ρ>(µ) =
= M1<ℑ,ρ>([γ?]<ℑ,ρ>(µ))+M2<ℑ,ρ>([¬γ?]<ℑ,ρ>(µ)).

– If K is a probabilistic branching, p ∈ R, 0 < p < 1 and M1<ℑ,ρ>(µ), M2<ℑ,ρ>(µ)
are defined then
[eitherp M1 or M2 ro]<ℑ,ρ>(µ) = p∗M1<ℑ,ρ>(µ)+(1− p)∗M2<ℑ,ρ>(µ).
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ZBIÓR FORMUŁ LOGIKI PrAL+

PRAWDZIWYCH W SKOŃCZONEJ STRUKTURZE
JEST NIEROZSTRZYGALNY

Streszczenie Rozważamy probabilistyczną logikę algorytmiczną. W pracy [6] znajduje się
uzasadnienie, że zbiór formuł logiki PrAL, prawdziwych w skończonej strukturze, jest roz-
strzygalny ze względu na diagram struktury. Dodajemy do języka LP logiki PrAL znak

⋃
i funktor lg. Następnie uzasadniamy, że zbiór formuł rozszerzonej logiki, prawdziwych w
skończonej co najmniej 2-elementowej strukturze (dla L+

P ), nie jest już rozstrzygalny.

Słowa kluczowe: probabilistyczna logika algorytmiczna, egzystencjalny kwantyfikator
iteracji
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