THE SET OF FORMULAS OF PrAL⁺ VALID IN A FINITE STRUCTURE IS UNDECIDABLE

Anna Borowska

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: We consider a probabilistic logic of programs. In [6] it is proved that the set of formulas of the logic PrAL, valid in a finite structure, is decidable with respect to the diagram of the structure. We add to the language L_P of PrAL a sign \bigcup and a functor lg. Next we justify that the set of formulas of extended logic, valid in a finite at least 2-element structure (for L_P^+) is undecidable.

Keywords: Probabilistic Algorithmic Logic, existential iteration quantifier

1. Introduction

In [6] the Probabilistic Algorithmic Logic PrAL is considered, constructed for expressing properties of probabilistic algorithms understood as iterative programs with two probabilistic constructions x := **random** and **either**_p ... **or** ... **ro**. In order to describe probabilities of behaviours of programs a sort of variables (interpreted as real numbers) and symbols +, -, *, 0, 1, < (interpreted in the standard way in the ordered field of real numbers) was added to the language L_p of PrAL.

In the paper [5] the changes of information which depend on realizations of probabilistic program was considered. That's why the language L_P was extended by adding the sign \bigcup (called the existential iteration quantifier) and the functor lg (for the one-argument operation of a logarithm with a base 2 interpreted in the real ordered field). The new language was denoted by L_P^+ .

The paper [6] contains an effective method of determining probabilities for probabilistic programs interpreted in a finite structure. The effectiveness of the method leads to the decidability of the set of formulas of L_P , valid in a fixed finite structure (provided that we have at our disposal a suitable finite part of the diagram of the structure). Here we shall justify that the set of probabilistic algorithmic formulas of L_P^+ ,

Advances in Computer Science Research, vol. 10, pp. 5-18, 2013.

valid in an arbitrary, finite at least 2-element structure, is undecidable with respect to its diagram.

We shall start from a presentation of the syntax and the semantics of the language L_P^+ . We use the syntax and the semantics of L_P proposed by W. Danko in [6].

2. Syntax and Semantics of L_P^+

A language L_P is an extension of a first-order language L and includes three kinds of well-formed expressions: terms, formulas and programs. As mentioned above, the alphabet of L_P^+ contains two additional elements: the arithmetic one-argument functor lg and the sign \bigcup (the existential iteration quantifier). An interpretation of L_P^+ relies on an interpretation of the first-order language L in a structure \Im (We take into consideration only finite structures. By finite structure we mean a structure with a finite, at least 2-element set A.) and on the standard interpretation of the language L_{\Re} in the ordered field of real numbers (cf. [6]).

The alphabet of the language L_P^+ contains

- a set of constants C_P , which consists of a finite subset $C = \{c_1, \ldots, c_u\}$ of symbols for each element of the set $A = \{a_1, \ldots, a_u\}$, a subset C_{\Re} of real constant symbols and a subset C_L of logical constant symbols,
- an enumerable set $V_P = \{V \cup V_{\Re} \bigcup V_0\}$ of variables, where a subset $V = \{v_0, v_1, \ldots\}$ consists of non-arithmetic individual variables, a subset $V_{\Re} = \{x_0, x_1, \ldots\}$ contains real variables and a subset $V_0 = \{q_0, q_1, \ldots\}$ contains propositional variables,
- a set of signs of relations Ψ_P = {Ψ∪Ψ_R}, where the subset Ψ consists of nonarithmetic predicates and the subset Ψ_R = {<_R, =_R} contains arithmetic predicates,
- an enumerable set of functors Φ_P = {Φ∪Φ_ℜ}, which consists of the subset Φ_ℜ = {+, -, *, lg} of symbols for arithmetic operations and the subset Φ of symbols for non-arithmetic operations,
- the set $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow\}$ of logical connectives,
- the set {if, then, else, fi, while, do, od, either, or, ro, random_l¹} of symbols for program constructions,
- the set $\{\exists, \forall\}$ of symbols for classical quantifiers (for real variables only),
- the existential iteration quantifier \bigcup ,

¹ For each probability distribution defined on a set A we generate a different random assignment. We use a number l to distinguish them.

- the set $\{(,)\}$ of auxiliary symbols.

In the language L_P^+ we distinguish two kinds of terms (arithmetic and nonarithmetic), formulas (classical and algorithmic) and programs.

The set of terms $T_P = \{T \cup T_{\Re}\}$ of L_P^+ consists of a subset of non-arithmetic terms *T* and a subset T_{\Re} of arithmetic terms.

Definition 2.1 The set T of *non-arithmetic terms* is defined as the smallest set of expressions satisfying the following conditions:

- each constant of C and each variable of V belongs to T,

- if $\phi_i \in \Phi$ (ϕ_i - an n_i -argument functor ($n_i \ge 0$)) and $\tau_1, \ldots, \tau_{n_i} \in T$ then an expression $\phi_i(\tau_1, \ldots, \tau_{n_i})$ belongs to T.

Definition 2.2 The set T_{\Re} of *arithmetic terms* is the smallest set such that:

– each constant of C_{\Re} and each real variable of V_{\Re} belongs to T_{\Re} ,

- if $t_1, t_2 \in T_{\Re}$ then expressions $t_1 + t_2, t_1 - t_2, t_1 * t_2, \lg t_1$ belong to T_{\Re} ,

– if α is a formula of L then P(α) belongs to T_{\Re} . (We read the symbol P as follows "probability that".)

Definition 2.3 The set F_O of *open formulas* is the smallest set such that:

- if $\tau_1, \ldots, \tau_{m_j} \in T$ and $\psi_j \in \Psi$ (ψ_j - an m_j -argument predicate) then $\psi_j(\tau_1, \ldots, \tau_{m_j}) \in F_O$,

- if $\alpha, \beta \in F_O$ then expressions $\neg \alpha, \alpha \lor \beta, \alpha \land \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$ belong to F_O .

Definition 2.4 The set Π of all *programs* is defined as the smallest set of expressions satisfying the following conditions:

- each expression of the form $v := \tau$ or $v := random_l$, where $v \in V$, $\tau \in T$ is a program,

- if $\gamma \in F_O$ and $M_1, M_2 \in \Pi$ then expressions $M_1; M_2$, if γ then M_1 else M_2 fi, while γ do M_1 od, either $_p M_1$ or M_2 ro (p is a real number) are programs.

We establish that in an expression $\bigcup K\alpha$ (where K is a program) the letter α denotes a formula which does not contain any iteration quantifiers.

Definition 2.5 The set F_P of all *formulas* of the language L_P^+ is the smallest extension of the set F_O such that:

 $- \text{ if } t_1, t_2 \in T_{\Re} \text{ then } t_1 =_{\Re} t_2, t_1 <_{\Re} t_2 \text{ belong to } F_P,$

- if $\alpha, \beta \in F_P$ then the expressions $\neg \alpha, \alpha \lor \beta, \alpha \land \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$ belong to F_P ,

- if $\alpha \in F_P$ and $x \in V_{\Re}$ is a free variable in α then $\exists x \alpha, \forall x \alpha$ belong to F_P ,
- − if *K* ∈ Π and α ∈ *F*_{*P*} then *K* α is a formula of *F*_{*P*},
- − if *K* ∈ Π and $\alpha \in F_P$ then $\bigcup K\alpha$ belongs to *F_P*.

A variable x is *free* in a formula α if x is not bounded by any quantifier.

Let L_P^+ be a fixed algorithmic language of the type $\langle \{n_k\}_{\phi_k \in \Phi_P}, \{m_l\}_{\psi_l \in \Psi_P} \rangle$ and let a relational system $\mathfrak{I} = \langle A \cup R; \{\phi_{k\mathfrak{I}}\}_{\phi_k \in \Phi_P}, \{\psi_{l\mathfrak{I}}\}_{\psi_l \in \Psi_P} \rangle$ (which consists of the fixed, finite, at least 2-element set *A*, the set *R* of real numbers, operations and relations) be a fixed data structure for L_P^+ .

We interpret non-arithmetic individual variables of L_P^+ as elements of A. Real variables are interpreted as elements of the set R of real numbers.

Let's denote the set of possible valuations w of non-arithmetic variables by W.

Definition 2.6 By *the interpretation of a non-aritmetic term* τ of L_P in the structure \Im we mean a function $\tau_{\Im} : W \mapsto A$ which is defined recursively.

- If τ is a variable $v \in V$ then $v_{\mathfrak{Z}}(w) \stackrel{df}{=} w(v)$.

- If τ is of the form $\phi(\tau_1, ..., \tau_n)$, where $\tau_1, ..., \tau_n \in T$ and $\phi \in \Phi$ is an *n*-argument functor then $\phi(\tau_1, ..., \tau_n)_{\mathfrak{I}}(w) \stackrel{df}{=} \phi_{\mathfrak{I}}(\tau_{\mathfrak{I}\mathfrak{I}}(w), ..., \tau_{n\mathfrak{I}}(w))$, where $\tau_{\mathfrak{I}\mathfrak{I}}(w), ..., \tau_{n\mathfrak{I}}(w)$ are defined earlier.

To interpret random assignments (i.e. constructions of the form $v := random_l$) in a probabilistic way we assume that there exists a fixed probability distribution defined on A

$$\rho_l : A \mapsto [0, 1], \qquad \sum_{i=1}^u \rho_l(a_i) = 1.$$

Definition 2.7 (cf. [6]) A pair $\langle \mathfrak{I}, \rho \rangle$, where ρ is a set of fixed probability distributions ρ_l defined on A and \mathfrak{I} is a structure for L_P^+ , is called *a probabilistic structure*. In this structure we interpret probabilistic programs.

By \mathcal{M} we denote the set of all probability distributions defined on the set W of valuations of non-arithmetic variables such that

$$\mu: W \mapsto [0,1], \qquad \sum_{w_i \in W} \mu(w_i) \le 1.$$

By S we mean the set of all *states*, i.e. all pairs $s = \langle \mu, w_{\Re} \rangle$, where μ is a probability distribution of valuations of non-arithmetic variables and w_{\Re} is a valuation of real variables of V_{\Re} .

Definition 2.8 (cf. [6]) A probabilistic program K is interpreted in the structure $<\Im, \rho >$ as a partial function transforming the set of states into the set of states

$$K_{<\mathfrak{I},\mathfrak{o}>}: S \mapsto S.$$

Let $K(v_1, \ldots, v_h)$ represent a fixed program in L_P^+ . An arbitrary program K contains only a finite number of non-arithmetic variables. We denote this set of variables by $V = \{v_1, \dots, v_h\}$. Since $A = \{a_1, \dots, a_u\}$ is also a finite set, then a set of all possible valuations of program variables will be also finite. We denote it by $\{w_1, \ldots, w_n\}$, where $n = u^h$.

Let's notice that programs do not operate on variables of V_{\Re} . Thus we can interpret an arbitrary program K as partial functions transforming probability distributions defined on the set of valuations of program variables (cf. [6])

$$K_{<\mathfrak{I},\mathfrak{o}>}:\mathcal{M}\mapsto\mathcal{M}.$$

If μ is the input probability distribution of valuations of program variables (input probability distribution for short) then a realization of a program K leads to a new output probability distribution μ' of valuations of program variables (output probability distribution for short). A distribution $\mu(\mu')$ associates with each valuation w of program variables a corresponding probability of its appearance.

The interpretation of program constructions (used in this paper) can be found in the Appendix.

An arithmetic term of the form $P(\alpha)$ denotes the probability, that the formula α of L is satisfied at a distribution μ (cf. [6])

 $[\mathbf{P}(\alpha)]_{\mathfrak{I}}(s) = \sum_{w \in W^{\alpha}} \mu(w), \text{ where } W^{\alpha} = \{w \in W : \mathfrak{I}, w \models \alpha\}.$

Let $s = \langle \mu, w_{\Re} \rangle$ be a state and let $s' = \langle \mu', w_{\Re} \rangle$ represent the state s' = $K_{<\mathfrak{I},\rho>}(s).$

Given below is the interpretation of a formula $K\alpha$ ($\alpha \in F_P$ and $K \in \Pi$). $(K\alpha)_{<\mathfrak{T},p>}(s) = \begin{cases} \alpha_{<\mathfrak{T},p>}(s') & \text{if } K_{<\mathfrak{T},p>}(s) \text{ is defined and } s' = K_{<\mathfrak{T},p>}(s) \\ \text{is not defined otherwise} \end{cases}$

The satisfiability of a formula $K\alpha$, where $\alpha \in F_P$ and $K \in \Pi$, is defined in the following way (cf. [6])

$$<\mathfrak{I}, \rho>, s\models Klpha ext{ iff } <\mathfrak{I}, \rho>, s'\models lpha, ext{ where } s'=K_{<\mathfrak{I}, \rho>}(s).$$

The next definition establishes the meaning of the existential iteration quantifier $(K \in \Pi, \alpha \in F_P).$

$$(\bigcup K\alpha)_{<\mathfrak{I},\rho>}(s) \stackrel{df}{=} \underset{i\in N}{\text{l.u.b.}} (K^{i}\alpha)_{<\mathfrak{I},\rho>}(s).$$

We can informally express the formula $\bigcup K\alpha$ in the following way $\alpha \lor K\alpha \lor K^2\alpha \lor \dots$

The satisfiability of a formula $\bigcup K\alpha$ ($K \in \Pi$, $\alpha \in F_P$) is defined as an infinite alternative of formulas ($K^i\alpha$) for $i \in N$.

Example 2.10 Now we shall present a formula which contains the iteration quantifier. Let's consider the formula $\beta : K_0 \bigcup K\alpha$ such that

*K*₀: $v_1 := 0$; *K*: **if** $(v_1 = 0)$ **then** $v_1 :=$ **random**₁; $v_2 := 0$; **else** $v_2 := 1$; **fi** α : $x = P(v_1 = 1 \lor v_2 = 0)$

where K_0 and K are programs interpreted in the structure $\langle \Im, \rho \rangle$ with a 2-element set $A = \{0, 1\}$. For a random assignment $v_1 :=$ **random**₁ we define the probability distribution $\rho_1 = [0.5, 0.5]$. The set of possible valuations of program variables contains 4 elements: $w_1 = (0,0)$, $w_2 = (0,1)$, $w_3 = (1,0)$, $w_4 = (1,1)$. We carry out computations for the input probability distribution $\mu = [0.25, 0.25, 0.25, 0.25]$. P(γ) denotes the probability that γ is satisfied (at a distribution μ). Let's notice, that formula β describes the following fact

 $(x = 0) \lor (x = 0.5) \lor (x = 0.5 * 0.5) \lor (x = 0.5 * 0.5 * 0.5) \lor \dots$

3. The proof of the main lemma

As we have mentioned (it is proved in [6]), the set of probabilistic algorithmic formulas of PrAL valid in a finite structure for L_P is decidable with respect to the diagram of the structure. By the diagram $D(\mathfrak{I})$ of the structure \mathfrak{I} we understand the set of all atomic or negated atomic formulas $\phi(c_{i_1}, \ldots, c_{i_m}) = c_{i_0}$ (ϕ is a functor of L) and $\psi(c_{i_1}, \ldots, c_{i_m})$ (ψ is a predicate symbol of L), which are valid in \mathfrak{I} .

The proof of decidability of PrAL essentially uses the Lemma which reduces the problem of validity of sentences of L_P to the (decidable) problem of the validity of sentences of the first-order arithmetic of real numbers. Finally, it appears that the set of formulas of PrAL, valid in all at most *u*-element structures for L_P , is decidable.

We shall show that if the language L_P^+ contains additionally the sign \bigcup and the functor lg (for the operation of a logarithm) we can define natural numbers and operations of addition and multiplication for natural numbers.

Let's assume that 0.5^i abbreviates the expression 0.5 * 0.5 * ... * 0.5.

i times

Lemma 3.1 Let $\langle \mathfrak{I}, \rho \rangle$ be an arbitrary fixed probabilistic structure (for L_P^+) with a finite set $A = \{a_1, a_2, \dots, a_u\}$, where u > 1. Let K_0 and K be as follows

 $\begin{array}{ll} K_0: & v_1 := a_u; \\ K: & \text{if } (v_1 = a_u) \text{ then} \\ & & \text{either}_{0.5} v_1 := a_u; v_2 := a_u; \text{ or } v_1 := a_{u-1}; v_2 := a_u; \text{ ro} \\ & & \text{else } v_1 := a_1; v_2 := a_u; \text{ fi} \end{array}$

For an arbitrary natural number i > 0, if $\mu = [\mu_1, \mu_2, \dots, \mu_{u^2}]$ is an input probability distribution then as a result of realization of program K_0 ; K^i we obtain the following output probability distribution

$$\mu' = K_0 K^i_{<\Im, \rho>}(\mu) = [\underbrace{0, \dots, 0}_{u-1 \text{ times}}, 1 - 0.5^{(i-1)}, \underbrace{0, \dots, 0}_{u^2 - 2u - 1 \text{ times}}, 0.5^i, \underbrace{0, \dots, 0}_{u-1 \text{ times}}, 0.5^i].$$

Proof. Let us assume that $\langle \mathfrak{I}, \rho \rangle$ is a fixed probabilistic structure (for L_P^+) with a finite at least 2-element set $A = \{a_1, a_2, \dots, a_u\}$. Let's consider an arbitrary program K_0 ; K^i $(i \in N_+)$. The set of possible valuations of program variables contains u^2 elements: $w_1 = (a_1, a_1)$, $w_2 = (a_1, a_2)$, ..., $w_u = (a_1, a_u)$, $w_{u+1} = (a_2, a_1)$, $w_{u+2} = (a_2, a_2)$, ..., $w_{2u} = (a_2, a_u)$, ..., $w_{u^2-u+1} = (a_u, a_1)$, $w_{u^2-u+2} = (a_u, a_2)$, ..., $w_{u^2} = (a_u, a_u)$. We carry out computations for the input probability distribution $\mu = [\mu_1, \mu_2, \dots, \mu_{u^2}]$. The proof of the Lemma 3.1 will proceed by induction on the length of programs.

(A) The base of induction.

First we shall justify that the realization of the program K_0 ; K leads to the probability distribution

$$\mu' = K_0 K_{<\Im,\rho>}(\mu) = [\underbrace{0, \dots, 0}_{u^2 - u - 1 \text{ times}}, 0.5, \underbrace{0, \dots, 0}_{u - 1 \text{ times}}, 0.5].$$

We shall determine the necessary probability distributions (cf. the Appendix).

 $[v_{1} := a_{1}]_{<\mathfrak{T}, \mathfrak{p}>}(\mu) = [\mu_{1} + \mu_{u+1} + \dots + \mu_{u^{2}-u+1}, \mu_{2} + \mu_{u+2} + \dots + \mu_{u^{2}-u+2}, \dots, \mu_{u} + \mu_{2u} + \dots + \mu_{u^{2}}, \underbrace{0, \dots, 0}_{u^{2}-u \text{ times}}]$ $[v_{1} := a_{u-1}]_{<\mathfrak{T}, \mathfrak{p}>}(\mu) = [\underbrace{0, \dots, 0}_{u^{2}-2u \text{ times}}, \mu_{1} + \mu_{u+1} + \dots + \mu_{u^{2}-u+1}, \mu_{2} + \mu_{u+2} + \dots + \mu_{u^{2}-u+2}, \dots, \mu_{u} + \mu_{2u} + \dots + \mu_{u^{2}}, \underbrace{0, \dots, 0}_{u \text{ times}}]$

- 1	- 1
- 1	

Anna Borowska

$$[v_{1} := a_{u}]_{<\mathfrak{Z},\rho>}(\mu) = [\underbrace{0,\ldots,0}_{u^{2}-u \text{ times}}, \mu_{1} + \mu_{u+1} + \ldots + \mu_{u^{2}-u+1}, \mu_{2} + \mu_{u+2} + \ldots + \mu_{u^{2}-u+2}, \ldots, \mu_{u} + \mu_{2u} + \ldots + \mu_{u^{2}}]$$

$$[v_{2} := a_{u}]_{<\mathfrak{Z},\rho>}(\mu) = [\underbrace{0,\ldots,0}_{u-1 \text{ times}}, \mu_{1} + \mu_{2} + \ldots + \mu_{u}, \underbrace{0,\ldots,0}_{u-1 \text{ times}}, \mu_{u+1} + \mu_{u+2} + \ldots + \mu_{2u}, \underbrace{0,\ldots,0}_{u-1 \text{ times}}, \ldots, \underbrace{0,\ldots,0}_{u-1 \text{ times}}, \mu_{u^{2}-u+1} + \mu_{u^{2}-u+2} + \ldots + \mu_{u^{2}}]$$
Let's denote the subprogram $v_{1} := a_{u}; v_{2} := a_{u};$ by N_{1} .

$$N_{1<\mathfrak{Z},\rho>}(\mu) = [v_{2} := a_{u}]_{<\mathfrak{Z},\rho>}([v_{1} := a_{u}]_{<\mathfrak{Z},\rho>}(\mu)) =$$

$$= [\underbrace{0,\ldots,0}_{u^{2}-1 \text{ times}}, (\mu_{1} + \mu_{u+1} + \ldots + \mu_{u^{2}-u+1}) + (\mu_{2} + \mu_{u+2} + \ldots + \mu_{u^{2}-u+2}) + \ldots + (\mu_{u} + \mu_{u+1} + \ldots + \mu_{u^{2}-u+1}) + (\mu_{2} + \mu_{u+2} + \ldots + \mu_{u^{2}-u+2}) + \ldots + (\mu_{u} + \mu_{u+1} + \ldots + \mu_{u^{2}-u+1}) =$$

$$= [\underbrace{0,\ldots,0}_{u^{2}-1 \text{ times}}, \mu_{1} + \mu_{2} + \ldots + \mu_{u^{2}}] = [\underbrace{0,\ldots,0}_{u^{2}-1 \text{ times}}, 1]$$

By N_2 we denote the subprogram $v_1 := a_{u-1}$; $v_2 := a_u$;.

$$N_{2<\Im,\rho>}(\mu) = [v_{2} := a_{u}]_{<\Im,\rho>}([v_{1} := a_{u-1}]_{<\Im,\rho>}(\mu)) =$$

$$= [\underbrace{0,\dots,0}_{u^{2}-u-1 \text{ times}}, (\mu_{1} + \mu_{u+1} + \dots + \mu_{u^{2}-u+1}) + (\mu_{2} + \mu_{u+2} + \dots + \mu_{u^{2}-u+2}) + \dots + (\mu_{u} + \mu_{u+1}), (\mu_{u}$$

The subprogram $v_1 := a_1$; $v_2 := a_u$; we denote by N_3 .

$$N_{3<\mathfrak{S},\rho>}(\mu) = [v_{2} := a_{u}]_{<\mathfrak{S},\rho>}([v_{1} := a_{1}]_{<\mathfrak{S},\rho>}(\mu)) =$$

$$= [\underbrace{0,\ldots,0}_{u-1 \text{ times}}, (\mu_{1} + \mu_{u+1} + \ldots + \mu_{u^{2}-u+1}) + (\mu_{2} + \mu_{u+2} + \ldots + \mu_{u^{2}-u+2}) + \ldots + (\mu_{u} + \mu_{2u} + \ldots + \mu_{u^{2}}), \underbrace{0,\ldots,0}_{u^{2}-u \text{ times}}] =$$

$$= [\underbrace{0,\ldots,0}_{u-1 \text{ times}}, \mu_{1} + \mu_{2} + \ldots + \mu_{u^{2}}, \underbrace{0,\ldots,0}_{u^{2}-u \text{ times}}] = [\underbrace{0,\ldots,0}_{u-1 \text{ times}}, 1, \underbrace{0,\ldots,0}_{u^{2}-u \text{ times}}]$$

Let's denote the subprogram **either**_{0.5} N_1 **or** N_2 **ro** by E.

$$E_{<\mathfrak{I},\rho>}(\mu) = 0.5 * (N_{1<\mathfrak{I},\rho>}(\mu)) + 0.5 * (N_{2<\mathfrak{I},\rho>}(\mu)) = 0.5 * [\underbrace{0,\ldots,0}_{u^2-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] + 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}, \underbrace{0,\ldots,0}_{u \text{ times}}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}, \underbrace{0,\ldots,0}_{u \text{ times}}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}, \underbrace{0,\ldots,0}_{u \text{ times}}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] + 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}] = 0.5 * [\underbrace{0,\ldots,0}_{u^2-u-1 \text{ times}}, \mu_1 + \mu_2 + \ldots + \mu_{u^2}]$$

$$= \begin{bmatrix} 0, \dots, 0 \\ u^{2}-u-1 \text{ times} \end{bmatrix}, 0.5 * (\mu_{1} + \dots + \mu_{u^{2}}), \underbrace{0, \dots, 0}_{u-1 \text{ times}}, 0.5 * (\mu_{1} + \dots + \mu_{u^{2}})] =$$
$$= \begin{bmatrix} 0, \dots, 0 \\ u^{2}-u-1 \text{ times} \end{bmatrix}, 0.5, \underbrace{0, \dots, 0}_{u-1 \text{ times}}, 0.5]$$

$$[(v_1 = a_u)?]_{<\mathfrak{I},\rho>}(\mu) = [\underbrace{0,\ldots,0}_{u^2 - u \text{ times}}, \mu_{u^2 - u + 1}, \mu_{u^2 - u + 2}, \ldots, \mu_{u^2}]$$
$$[\neg (v_1 = a_u)?]_{<\mathfrak{I},\rho>}(\mu) = [\mu_1, \mu_2, \ldots, \mu_{u^2 - u}, \underbrace{0,\ldots,0}_{u \text{ times}}]$$

$$\begin{split} &K_{<\mathfrak{Z},\rho>}(\mu) = E_{<\mathfrak{Z},\rho>}([(v_1 = a_u)?]_{<\mathfrak{Z},\rho>}(\mu)) + N_{\mathfrak{Z},\mathfrak{Z},\rho>}([\neg (v_1 = a_u)?]_{<\mathfrak{Z},\rho>}(\mu)) = \\ &= \begin{bmatrix} 0, \dots, 0 \\ u^2 - u - 1 \text{ times} \end{bmatrix}, 0.5 * (\mu_{u^2 - u + 1} + \mu_{u^2 - u + 2} + \dots + \mu_{u^2}), 0, \dots, 0 \\ \mu_{u^2 - u + 2} + \dots + \mu_{u^2})] + \begin{bmatrix} 0, \dots, 0 \\ u - 1 \text{ times} \end{bmatrix}, (\mu_1 + \mu_2 + \dots + \mu_{u^2 - u}), 0, \dots, 0 \\ \mu_{u^2 - u \text{ times}} \end{bmatrix} = \\ &= \begin{bmatrix} 0, \dots, 0 \\ u - 1 \text{ times} \end{bmatrix}, (\mu_1 + \mu_2 + \dots + \mu_{u^2 - u}), 0, \dots, 0 \\ \mu_{u^2 - u \text{ times}} \end{bmatrix}, 0.5 * (\mu_{u^2 - u + 1} + \mu_{u^2 - u + 2} + \dots + \mu_{u^2})] \\ &= \begin{bmatrix} 0, \dots, 0 \\ u - 1 \text{ times} \end{bmatrix}, 0.5 * (\mu_{u^2 - u + 1} + \mu_{u^2 - u + 2} + \dots + \mu_{u^2})] \end{split}$$

Finally

$$\begin{split} &K_{<\mathfrak{I},\mathfrak{p}>}(K_{0<\mathfrak{I},\mathfrak{p}>}(\mu)) = K_{<\mathfrak{I},\mathfrak{p}>}([v_{1}:=a_{u}]_{<\mathfrak{I},\mathfrak{p}>}(\mu)) = \\ &= [\underbrace{0,\ldots,0}_{u^{2}-u-1 \ times}, 0.5*((\mu_{1}+\mu_{u+1}+\ldots+\mu_{u^{2}-u+1})+(\mu_{2}+\mu_{u+2}+\ldots+\mu_{u^{2}-u+2})+\ldots+(\mu_{u}+\mu_{2u}+\ldots+\mu_{u^{2}})), \underbrace{0,\ldots,0}_{u-1 \ times}, 0.5*((\mu_{1}+\mu_{u+1}+\ldots+\mu_{u^{2}-u+1})+(\mu_{2}+\mu_{u+2}+\ldots+\mu_{u^{2}-u+1})+(\mu_{2}+\mu_{u+2}+\ldots+\mu_{u^{2}}))] = \\ &= [\underbrace{0,\ldots,0}_{u^{2}-u-1 \ times}, 0.5*(\mu_{1}+\mu_{2}+\ldots+\mu_{u^{2}}), \underbrace{0,\ldots,0}_{u-1 \ times}, 0.5*(\mu_{1}+\mu_{2}+\ldots+\mu_{u^{2}})] = \\ &= [\underbrace{0,\ldots,0}_{u^{2}-u-1 \ times}, 0.5, \underbrace{0,\ldots,0}_{u-1 \ times}, 0.5]. \end{split}$$

(B) The inductive step.

The inductive assumption. For a certain natural number k, if $\mu = [\mu_1, \mu_2, \dots, \mu_{u^2}]$ is an input probability distribution then as a result of realization of the program K_0 ; K^k we obtain the following output probability distribution

$$K_{0}K^{k} < \Im, \rho > (\mu) =$$

$$= [\underbrace{0, \dots, 0}_{u-1 \text{ times}}, (1 - 0.5^{(k-1)}) * (\mu_{1} + \mu_{2} + \dots + \mu_{u^{2}}), \underbrace{0, \dots, 0}_{u^{2} - 2u - 1 \text{ times}}, 0.5^{k} * (\mu_{1} + \mu_{2} + \dots + \mu_{u^{2}})] =$$

$$= [\underbrace{0, \dots, 0}_{u-1 \text{ times}}, (1 - 0.5^{(k-1)}), \underbrace{0, \dots, 0}_{u^{2} - 2u - 1 \text{ times}}, 0.5^{k}, \underbrace{0, \dots, 0}_{u-1 \text{ times}}, 0.5^{k}]$$

We shall apply the inductive assumption to show that if we take $\mu = [\mu_1, \mu_2, \dots, \mu_{u^2}]$ as the input probability distribution then after the execution of the program $K_0; K^{k+1}$ we obtain the following output probability distribution

$$K_{0}K_{<3,\rho>}^{k+1}(\mu) = [\underbrace{0,\ldots,0}_{u-1 \ times}, (1-0.5^{k}) * (\mu_{1}+\mu_{2}+\ldots+\mu_{u^{2}}), \underbrace{0,\ldots,0}_{u^{2}-2u-1 \ times}, (1-0.5^{k}) * (\mu_{1}+\mu_{2}+\ldots+\mu_{u^{2}}), \underbrace{0,\ldots,0}_{u-1 \ times}, (1-0.5^{k}), \underbrace{0,\ldots,0}_{u^{2}-2u-1 \ times}, (0.5^{(k+1)}) * (\mu_{1}+\mu_{2}+\ldots+\mu_{u^{2}})] = \\ = [\underbrace{0,\ldots,0}_{u-1 \ times}, (1-0.5^{k}), \underbrace{0,\ldots,0}_{u^{2}-2u-1 \ times}, (0.5^{(k+1)}), \underbrace{0,\ldots,0}_{u-1 \ times}, (0.5^{(k+1)})]$$

We can express a composition of programs in the following way (cf. the Appendix)

$$K_0 K_{<\mathfrak{I},\rho>}^{k+1}(\mu) = K_{<\mathfrak{I},\rho>}(K_0 K_{<\mathfrak{I},\rho>}^k(\mu))$$

Hence by the inductive assumption

$$K_{<\Im,\rho>}(K_0K_{<\Im,\rho>}^k(\mu)) = K_{<\Im,\rho>}([\underbrace{0,\ldots,0}_{u-1 \text{ times}},(1-0.5^{(k-1)})*(\mu_1+\mu_2+\ldots+\mu_{u^2}), \underbrace{0,\ldots,0}_{u-1 \text{ times}},(0.5^k*(\mu_1+\mu_2+\ldots+\mu_{u^2}), \underbrace{0,\ldots,0}_{u-1 \text{ times}},(0.5^k*(\mu_1+\mu_2+\ldots+\mu_{u^2})]) = \frac{1}{2}$$

$$= [\underbrace{0,\ldots,0}_{u-1 \text{ times}},(1-0.5^{(k-1)}+0.5^k), \underbrace{0,\ldots,0}_{u^2-2u-1 \text{ times}},(0.5*0.5^k,\underbrace{0,\ldots,0}_{u-1 \text{ times}},0.5*0.5^k] = \\= [\underbrace{0,\ldots,0}_{u-1 \text{ times}},(1-0.5^k), \underbrace{0,\ldots,0}_{u^2-2u-1 \text{ times}},(0.5^{(k+1)},\underbrace{0,\ldots,0}_{u-1 \text{ times}},0.5^{(k+1)}]]$$

which accomplishes the inductive proof.

Lemma 3.2 Let $\langle \mathfrak{I}, \rho \rangle$ be an arbitrary fixed structure (for L_P^+) with a finite set $A = \{a_1, a_2, \dots, a_u\}$, where u > 1. The set of formulas of PrAL⁺ valid in $\langle \mathfrak{I}, \rho \rangle$ is undecidable.

Proof. Let $\langle \mathfrak{I}, \rho \rangle$ be an arbitrary fixed structure (for L_P^+) with a finite at least 2-element set $A = \{a_1, \dots, a_u\}$. Let's consider the formula β of the form $K_0 \bigcup K\alpha$, where K_0 , K are the programs considered in the Lemma 3.1 and α is as follows α : $x = P(v_1 = a_{u-1} \land v_2 = a_u)$.

The computations are carried out for the input probability distribution $\mu = [\mu_1, \mu_2, \dots, \mu_{u^2}]$ and for programs K_0 and $K_0; K^i$, where $i \in N_+$. Let's denote $K_{0<\mathfrak{F},p>}(\mu)$ by η . We know that

$$\eta = K_{0<\mathfrak{F},\rho>}(\mu) = [v_1 := a_u]_{<\mathfrak{F},\rho>}(\mu) = [\underbrace{0,\ldots,0}_{u^2-u \text{ times}}, \mu_1 + \mu_{u+1} + \ldots + \mu_{u^2-u+1}, \mu_2 + \mu_{u+2} + \ldots + \mu_{u^2-u+2}, \ldots, \mu_u + \mu_{2u} + \ldots + \mu_{u^2}].$$

By the Lemma 3.1 we obtain that for an arbitrary number i > 0

$$\mu' = K_0 K_{<\Im, \rho>}^i(\mu) = [\underbrace{0, \dots, 0}_{u-1 \ times}, (1-0.5^{(i-1)}), \underbrace{0, \dots, 0}_{u^2 - 2u - 1 \ times}, \underbrace{0.5^i}_{u-1 \ times}, \underbrace{0.5^i}_{u-1 \ times}, 0.5^i].$$

We recall, that $P(v_1 = a_{u-1} \land v_2 = a_u) = \mu'(w_{u^2-u})$, where $w_{u^2-u} = (a_{u-1}, a_u)$. We can notice that for $i \in N_+$ we have $\mu'(w_{u^2-u}) = \underline{0.5^i}$ and additionally $\eta(w_{u^2-u}) = \underline{0}$. Therefore the formula β : $K_0 \bigcup K \alpha$ describes the following fact

$$(x=0) \lor (x=0.5) \lor (x=0.25) \lor (x=0.125) \lor \dots \lor (x=0.5^{i}) \lor \dots$$

Let's notice, that we can define an arbitrary natural number k in the following way. Let k be a real number

$$N(k)$$
 iff $< \mathfrak{I}, \rho > \models (k = 0 \lor \exists x((k = -\lg x) \land K_0 \bigcup K\alpha)).$

Since the natural numbers were generated among real numbers and operations of addition and multiplication exist in the structure $\Re = \langle R; +, -, *, 0, 1, \langle \rangle$, we can define these operations for constructed natural numbers. For arbitrary x_0, x_1, x_2

$$x_0 \pm x_1 = x_2 \text{ iff } < \mathfrak{I}, \rho > \models N(x_0) \land N(x_1) \land x_2 = x_0 + x_1,$$

$$x_0 \pm x_1 = x_2 \text{ iff } < \mathfrak{I}, \rho > \models N(x_0) \land N(x_1) \land x_2 = x_0 * x_1.$$

Since $Th(\langle N; \pm, \pm, 0, 1 \rangle)$ is undecidable (cf. [2,11,7]), the set of formulas of considered algorithmic logic, valid in a fixed, finite at least 2-element structure (for L_p^+) is also undecidable.

4. Appendix (cf. [6])

By the interpretation of a program *K* of L_P^+ in the structure $\langle \mathfrak{I}, \rho \rangle$ we mean a function $K_{\langle \mathfrak{I}, \rho \rangle} : \mathcal{M} \mapsto \mathcal{M}$ which is defined recursively.

- If *K* is an assignment instruction of the form $v_r := \tau$ (for $v_r \in V$, r = 1,...,h and $\tau \in T$) then $[v_r := \tau]_{<\Im, \rho>}(\mu) = \mu'$, where $\mu'(w_j) = \sum_{w \in W^{r,\tau}} \mu(w)$ for j = 1,...,n and $W^{r,\tau} = \{w \in W : w(v_r) = \tau_{\Im}(w_{in}) \land \forall_{v \in V \setminus \{v_r\}} w(v) = w_{in}(v)\}.$ w_{in} denotes an input valuation of program variables.
- If *K* is a random assignment of the form $v_r := \mathbf{random}_l$ (for $v_r \in V$, r = 1, ..., hand ρ_l being a probability distribution defined on *A*) then $[v_r := \mathbf{random}_l]_{<3,\rho>}(\mu) = \mu'$, where $\mu'(w_j) = \rho_l(w_j(v_r)) * \sum_{w \in W^r} \mu(w)$ and $W^r = \{w \in W : \forall_{v \in V \setminus \{v_r\}} w(v) = w_{in}(v)\}.$
- We interpret the program while $\neg \gamma$ do v := v od (for $v \in V$ and $\gamma \in F_O$) in the following way

 $[\gamma?]_{<\mathfrak{I},\rho>}(\mu) = [\text{while } \neg \gamma \text{ do } v := v \text{ od}]_{<\mathfrak{I},\rho>}(\mu) = \mu', \text{ where}$ $\mu'(w_j) = \begin{cases} \mu(w_i) \text{ for } w_i = w_j \land \mathfrak{I}, w_i \models \gamma \\ 0 & \text{otherwise} \end{cases}$ We denote this program construction by [\gamma?].

- If K is a composition of programs M_1 , M_2 and $M_{1<\mathfrak{F},\rho>}(\mu)$, $M_{2<\mathfrak{F},\rho>}(\mu)$ are defined then $[M_1; M_2]_{<\mathfrak{F},\rho>}(\mu) = M_{2<\mathfrak{F},\rho>}(M_{1<\mathfrak{F},\rho>}(\mu)).$
- If K is a branching between the two programs M_1 , M_2 and $M_{1<\mathfrak{F},\rho>}(\mu)$, $M_{2<\mathfrak{F},\rho>}(\mu)$ are defined then [if γ then M_1 else M_2 fi]_{<\mathfrak{F},\rho>}(\mu) = $= M_{1<\mathfrak{F},\rho>}([\gamma?]_{<\mathfrak{F},\rho>}(\mu)) + M_{2<\mathfrak{F},\rho>}([\neg\gamma?]_{<\mathfrak{F},\rho>}(\mu)).$}
- If *K* is *a probabilistic branching*, $p \in R$, $0 and <math>M_{1 < \Im, \rho >}(\mu)$, $M_{2 < \Im, \rho >}(\mu)$ are defined then [**either**_{*p*} M_1 **or** M_2 **ro**]_{$<\Im, \rho >$}(μ) = $p * M_{1 < \Im, \rho >}(\mu) + (1 - p) * M_{2 < \Im, \rho >}(\mu)$.
- 16

References

- [1] L. Banachowski, Investigations of Properties of Programs by Means of the Extended Algorithmic Logic, Fundamenta Informatica, 1 (1977), p. 167–193.
- [2] J. Barwise, Handbook of Mathematical Logic, Elsevier Science Publishers B.V., 1983.
- [3] A. Borowska, Algorithmic Information Theory, Computer Information Systems and Industrial Management Applications, 2003, p. 5–31.
- [4] A. Borowska, Algebraic Methods of Determining of Transition Probabilities in Probabilistic Algorithms, Conference Materials of XV FIT, 2004, p. 148–157.
- [5] A. Borowska, Selected Problems of the Probabilistic Algorithms and the Markov Chains. Reduction of Valuations, Ph.D. Thesis, Technical University of Bialystok, 2010.
- [6] W. Danko, The set of Probabilistic Algorithmic Formulas Valid in a Finite Structure is Decidable with Respect to its diagram, Fundamenta Informatica, Vol. 19 (1993), p. 417–431.
- [7] A. Grzegorczyk, An Outline of Theoretical Arithmetics, PWN, Warsaw 1971.
- [8] J. Koszelew, The Methods of Analysis of Properties of Probabilistic Programs Interpreted in Finite Fields, Ph.D. Thesis, PAN, 2000.
- [9] A. Kreczmar, Effectivity problems of algorithmic logic, Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 14 (1974), Publisher Springer Berlin Heidelberg, p. 584–600.
- [10] A. Kreczmar, The Set of all Tautologies of Algorithmic Logic is Hyperarithmetical, Bull. Acad. Polon. Sci., Ser. Math. Astron. Phys., 21 (1971), p. 781– 783.
- [11] R. C. London, About Mathematical Logic, PWN, Warsaw, 1968.
- [12] G. Mirkowska, A. Salwicki, Algorithmic Logic, PWN-Polish Scientific Publishers, 1987.
- [13] G. Mirkowska, A. Salwicki, Algorithmic Logic for Programmers, WN-T, Warsaw, 1992.
- [14] A. Rutkowski, Elements of Mathematical Logic, WSiP, Warsaw, 1978.

ZBIÓR FORMUŁ LOGIKI PrAL⁺ PRAWDZIWYCH W SKOŃCZONEJ STRUKTURZE JEST NIEROZSTRZYGALNY

Streszczenie Rozważamy probabilistyczną logikę algorytmiczną. W pracy [6] znajduje się uzasadnienie, że zbiór formuł logiki PrAL, prawdziwych w skończonej strukturze, jest rozstrzygalny ze względu na diagram struktury. Dodajemy do języka L_P logiki PrAL znak \bigcup i funktor lg. Następnie uzasadniamy, że zbiór formuł rozszerzonej logiki, prawdziwych w skończonej co najmniej 2-elementowej strukturze (dla L⁺_P), nie jest już rozstrzygalny.

Słowa kluczowe: probabilistyczna logika algorytmiczna, egzystencjalny kwantyfikator iteracji